Magdalena Pasternak (University of Florida), Kevin Warren (University of Florida), Daniel Olszewski (University of Florida), Susan Nittrouer (University of Florida), Patrick Traynor (University of Florida), Kevin Butler (University of Florida)

Cochlear implants (CIs) allow deaf and hard-of-hearing individuals to use audio devices, such as phones or voice assistants. However, the advent of increasingly sophisticated synthetic audio (i.e., deepfakes) potentially threatens these users. Yet, this population's susceptibility to such attacks is unclear. In this paper, we perform the first study of the impact of audio deepfakes on CI populations. We examine the use of CI-simulated audio within deepfake detectors. Based on these results, we conduct a user study with 35 CI users and 87 hearing persons (HPs) to determine differences in how CI users perceive deepfake audio. We show that CI users can, similarly to HPs, identify text-to-speech generated deepfakes. Yet, they perform substantially worse for voice conversion deepfake generation algorithms, achieving only 67% correct audio classification. We also evaluate how detection models trained on a CI-simulated audio compare to CI users and investigate if they can effectively act as proxies for CI users. This work begins an investigation into the intersection between adversarial audio and CI users to identify and mitigate threats against this marginalized group.

View More Papers

NodeMedic-FINE: Automatic Detection and Exploit Synthesis for Node.js Vulnerabilities

Darion Cassel (Carnegie Mellon University), Nuno Sabino (IST & CMU), Min-Chien Hsu (Carnegie Mellon University), Ruben Martins (Carnegie Mellon University), Limin Jia (Carnegie Mellon University)

Read More

Iris: Dynamic Privacy Preserving Search in Authenticated Chord Peer-to-Peer...

Angeliki Aktypi (University of Oxford), Kasper Rasmussen (University of Oxford)

Read More

An Empirical Study on Fingerprint API Misuse with Lifecycle...

Xin Zhang (Fudan University), Xiaohan Zhang (Fudan University), Zhichen Liu (Fudan University), Bo Zhao (Fudan University), Zhemin Yang (Fudan University), Min Yang (Fudan University)

Read More