Cas Cremers (CISPA Helmholtz Center for Information Security), Martin Dehnel-Wild (University of Oxford)

The 5G mobile telephony standards are nearing completion; upon adoption these will be used by billions across the globe. Ensuring the security of 5G communication is of the utmost importance, building trust in a critical component of everyday life and national infrastructure.

We perform a fine-grained formal analysis of 5G’s main authentication and key agreement protocol (5G-AKA), and provide the first models that explicitly consider all parties defined by the protocol specification. Our formal analysis reveals that the security of 5G-AKA critically relies on unstated assumptions on the inner workings of the underlying channels. In practice this means that following the 5G-AKA specification, a provider can easily and ‘correctly’ implement the standard insecurely, leaving the protocol vulnerable to a security-critical race condition. We then provide the first models and analysis considering component and channel compromise in 5G, the results of which further demonstrate the fragility and subtle trust assumptions of the 5G-AKA protocol.

We propose formally verified fixes to the encountered issues, and we have worked with 3GPP to ensure that these fixes are adopted.

View More Papers

TIMBER-V: Tag-Isolated Memory Bringing Fine-grained Enclaves to RISC-V

Samuel Weiser (Graz University of Technology), Mario Werner (Graz University of Technology), Ferdinand Brasser (Technische Universität Darmstadt), Maja Malenko (Graz University of Technology), Stefan Mangard (Graz University of Technology), Ahmad-Reza Sadeghi (Technische Universität Darmstadt)

Read More

Practical Hidden Voice Attacks against Speech and Speaker Recognition...

Hadi Abdullah (University of Florida), Washington Garcia (University of Florida), Christian Peeters (University of Florida), Patrick Traynor (University of Florida), Kevin R. B. Butler (University of Florida), Joseph Wilson (University of Florida)

Read More

Digital Healthcare-Associated Infection: A Case Study on the Security...

Luis Vargas (University of Florida), Logan Blue (University of Florida), Vanessa Frost (University of Florida), Christopher Patton (University of Florida), Nolen Scaife (University of Florida), Kevin R.B. Butler (University of Florida), Patrick Traynor (University of Florida)

Read More

CRCount: Pointer Invalidation with Reference Counting to Mitigate Use-after-free...

Jangseop Shin (Seoul National University and Inter-University Semiconductor Research Center), Donghyun Kwon (Seoul National University and Inter-University Semiconductor Research Center), Jiwon Seo (Seoul National University and Inter-University Semiconductor Research Center), Yeongpil Cho (Soongsil University), Yunheung Paek (Seoul National University and Inter-University Semiconductor Research Center)

Read More