Cas Cremers (CISPA Helmholtz Center for Information Security), Martin Dehnel-Wild (University of Oxford)

The 5G mobile telephony standards are nearing completion; upon adoption these will be used by billions across the globe. Ensuring the security of 5G communication is of the utmost importance, building trust in a critical component of everyday life and national infrastructure.

We perform a fine-grained formal analysis of 5G’s main authentication and key agreement protocol (5G-AKA), and provide the first models that explicitly consider all parties defined by the protocol specification. Our formal analysis reveals that the security of 5G-AKA critically relies on unstated assumptions on the inner workings of the underlying channels. In practice this means that following the 5G-AKA specification, a provider can easily and ‘correctly’ implement the standard insecurely, leaving the protocol vulnerable to a security-critical race condition. We then provide the first models and analysis considering component and channel compromise in 5G, the results of which further demonstrate the fragility and subtle trust assumptions of the 5G-AKA protocol.

We propose formally verified fixes to the encountered issues, and we have worked with 3GPP to ensure that these fixes are adopted.

View More Papers

Latex Gloves: Protecting Browser Extensions from Probing and Revelation...

Alexander Sjösten (Chalmers University of Technology), Steven Van Acker (Chalmers University of Technology), Pablo Picazo-Sanchez (Chalmers University of Technology), Andrei Sabelfeld (Chalmers University of Technology)

Read More

JavaScript Template Attacks: Automatically Inferring Host Information for Targeted...

Michael Schwarz (Graz University of Technology), Florian Lackner (Graz University of Technology), Daniel Gruss (Graz University of Technology)

Read More

TextBugger: Generating Adversarial Text Against Real-world Applications

Jinfeng Li (Zhejiang University), Shouling Ji (Zhejiang University), Tianyu Du (Zhejiang University), Bo Li (University of California, Berkeley), Ting Wang (Lehigh University)

Read More

Tranco: A Research-Oriented Top Sites Ranking Hardened Against Manipulation

Victor Le Pochat (imec-DistriNet, KU Leuven), Tom Van Goethem (imec-DistriNet, KU Leuven), Samaneh Tajalizadehkhoob (Delft University of Technology), Maciej Korczyński (Grenoble Alps University), Wouter Joosen (imec-DistriNet, KU Leuven)

Read More