Pinji Chen (Tsinghua University), Jianjun Chen (Tsinghua University & Zhongguancun Laboratory), Mingming Zhang (Zhongguancun Laboratory), Qi Wang (Tsinghua University), Yiming Zhang (Tsinghua University), Mingwei Xu (Tsinghua University), Haixin Duan (Tsinghua University)

In this paper, we investigate the security implications of HTTP/2 server push and signed HTTP exchange (SXG) on the Same-Origin Policy (SOP), a fundamental web security mechanism designed to prevent cross-origin attacks. We identify a vulnerability introduced by these features, where the traditional strict SOP origin based on URI is undermined by a more permissive HTTP/2 authority based on the SubjectAlternativeName (SAN) list in the TLS certificate. This relaxation of origin constraints, coupled with the prevalent use of shared certificates among unrelated domains, poses significant security risks, allowing attackers to bypass SOP protections. We introduce two novel attack vectors, CrossPUSH and CrossSXG, which enable an off-path attacker to execute a wide range of cross-origin web attacks, including arbitrary cross-site scripting (XSS), cookie manipulation, and malicious file downloads, across all domains listed in a shared certificate. Our investigation reveals the practicality and prevalence of these threats, with our measurements uncovering vulnerabilities in widely-used web browsers such as Chrome and Edge, and notable websites including Microsoft. We responsibly disclose our findings to affected vendors and receive acknowledgments from Huawei, Baidu, Microsoft, etc.

View More Papers

DLBox: New Model Training Framework for Protecting Training Data

Jaewon Hur (Seoul National University), Juheon Yi (Nokia Bell Labs, Cambridge, UK), Cheolwoo Myung (Seoul National University), Sangyun Kim (Seoul National University), Youngki Lee (Seoul National University), Byoungyoung Lee (Seoul National University)

Read More

Inspecting Compiler Optimizations on Mixed Boolean Arithmetic Obfuscation

Rachael Little, Dongpeng Xu (University of New Hampshire)

Read More

BULKHEAD: Secure, Scalable, and Efficient Kernel Compartmentalization with PKS

Yinggang Guo (State Key Laboratory for Novel Software Technology, Nanjing University; University of Minnesota), Zicheng Wang (State Key Laboratory for Novel Software Technology, Nanjing University), Weiheng Bai (University of Minnesota), Qingkai Zeng (State Key Laboratory for Novel Software Technology, Nanjing University), Kangjie Lu (University of Minnesota)

Read More

Ring of Gyges: Accountable Anonymous Broadcast via Secret-Shared Shuffle

Wentao Dong (City University of Hong Kong), Peipei Jiang (Wuhan University; City University of Hong Kong), Huayi Duan (ETH Zurich), Cong Wang (City University of Hong Kong), Lingchen Zhao (Wuhan University), Qian Wang (Wuhan University)

Read More