Riccardo Paccagnella (University of Illinois at Urbana–Champaign), Pubali Datta (University of Illinois at Urbana–Champaign), Wajih Ul Hassan (University of Illinois at Urbana–Champaign), Adam Bates (University of Illinois at Urbana–Champaign), Christopher W. Fletcher (University of Illinois at Urbana–Champaign), Andrew Miller (University of Illinois at Urbana–Champaign), Dave Tian (Purdue University)

System auditing is a central concern when investigating and responding to security incidents. Unfortunately, attackers regularly engage in anti-forensic activities after a break-in, covering their tracks from the system logs in order to frustrate the efforts of investigators. While a variety of tamper-evident logging solutions have appeared throughout the industry and the literature, these techniques do not meet the operational and scalability requirements of system-layer audit frameworks.

In this work, we introduce Custos, a practical framework for the detection of tampering in system logs. Custos consists of a tamper-evident logging layer and a decentralized auditing protocol. The former enables the verification of log integrity with minimal changes to the underlying logging framework, while the latter enables near real-time detection of log integrity violations within an enterprise-class network. Custos is made practical by the observation that we can decouple the costs of cryptographic log commitments from the act of creating and storing log events, without trading off security, leveraging features of off-the-shelf trusted execution environments. Supporting over one million events per second, we show that Custos' tamper-evident logging protocol is three orders of magnitude (1000×) faster than prior solutions and incurs only between 2% and 7% runtime overhead over insecure logging on intensive workloads. Further, we show that Custos' auditing protocol can detect violations in near real-time even in the presence of a powerful distributed adversary and with minimal (3%) network overhead. Our case study on a real-world APT attack scenario demonstrates that Custos forces anti-forensic attackers into a "lose-lose" situation, where they can either be covert and not tamper with logs (which can be used for forensics), or erase logs but then be detected by Custos.

View More Papers

Proof of Storage-Time: Efficiently Checking Continuous Data Availability

Giuseppe Ateniese (Stevens Institute of Technology), Long Chen (New Jersey Institute of Technology), Mohammard Etemad (Stevens Institute of Technology), Qiang Tang (New Jersey Institute of Technology)

Read More

A Practical Approach for Taking Down Avalanche Botnets Under...

Victor Le Pochat (imec-DistriNet, KU Leuven), Tim Van hamme (imec-DistriNet, KU Leuven), Sourena Maroofi (Univ. Grenoble Alpes, CNRS, Grenoble INP, LIG), Tom Van Goethem (imec-DistriNet, KU Leuven), Davy Preuveneers (imec-DistriNet, KU Leuven), Andrzej Duda (Univ. Grenoble Alpes, CNRS, Grenoble INP, LIG), Wouter Joosen (imec-DistriNet, KU Leuven), Maciej Korczyński (Univ. Grenoble Alpes, CNRS, Grenoble INP, LIG)

Read More

Trident: Efficient 4PC Framework for Privacy Preserving Machine Learning

Harsh Chaudhari (Indian Institute of Science, Bangalore), Rahul Rachuri (Aarhus University, Denmark), Ajith Suresh (Indian Institute of Science, Bangalore)

Read More

Post-Quantum Authentication in TLS 1.3: A Performance Study

Dimitrios Sikeridis (The University of New Mexico), Panos Kampanakis (Cisco Systems), Michael Devetsikiotis (The University of New Mexico)

Read More