Fifteen billion devices run Java and many of them are connected to the Internet. As this ecosystem continues to grow, it remains an important task to discover the unknown security threats these devices face. Fuzz testing repeatedly runs software on random inputs in order to trigger unexpected program behaviors, such as crashes or timeouts, and has historically revealed serious security vulnerabilities. Contemporary fuzz testing techniques focus on identifying memory corruption vulnerabilities that allow adversaries to achieve remote code execution. Meanwhile, algorithmic complexity (AC) vulnerabilities, which are a common attack vector for denial-of-service attacks, remain an understudied threat.

In this paper, we present HotFuzz, a framework for automatically discovering AC vulnerabilities in Java libraries. HotFuzz uses micro-fuzzing, a genetic algorithm that evolves arbitrary Java objects in order to trigger the worst-case performance for a method under test. We define Small Recursive Instantiation (SRI) which provides seed inputs to micro-fuzzing represented as Java objects. After micro-fuzzing, HotFuzz synthesizes test cases that triggered AC vulnerabilities into Java programs and monitors their execution in order to reproduce vulnerabilities outside the analysis framework. HotFuzz outputs those programs that exhibit high CPU utilization as witnesses for AC vulnerabilities in a Java library.

We evaluate HotFuzz over the Java Runtime Environment (JRE), the 100 most popular Java libraries on Maven, and challenges contained in the DARPA Space and Time Analysis for Cyber-Security (STAC) program. We compare the effectiveness of using seed inputs derived using SRI against using empty values. In this evaluation, we verified known AC vulnerabilities, discovered previously unknown AC vulnerabilities that we responsibly reported to vendors, and received confirmation from both IBM and Oracle. Our results demonstrate micro-fuzzing finds AC vulnerabilities in real-world software, and that micro-fuzzing with SRI derived seed inputs complements using empty seed inputs.

View More Papers

Strong Authentication without Temper-Resistant Hardware and Application to Federated...

Zhenfeng Zhang (Chinese Academy of Sciences, University of Chinese Academy of Sciences, and The Joint Academy of Blockchain Innovation), Yuchen...

Read More

Dynamic Searchable Encryption with Small Client Storage

Ioannis Demertzis (University of Maryland), Javad Ghareh Chamani (Hong Kong University of Science and Technology & Sharif University of Technology),...

Read More

The Attack of the Clones Against Proof-of-Authority

Parinya Ekparinya (University of Sydney), Vincent Gramoli (University of Sydney and CSIRO-Data61), Guillaume Jourjon (CSIRO-Data61)

Read More

CloudLeak: Large-Scale Deep Learning Models Stealing Through Adversarial Examples

Honggang Yu (University of Florida), Kaichen Yang (University of Florida), Teng Zhang (University of Central Florida), Yun-Yun Tsai (National Tsing...

Read More