Weikeng Chen (UC Berkeley), Raluca Ada Popa (UC Berkeley)

File-sharing systems like Dropbox offer insufficient privacy because a compromised server can see the file contents in the clear. Although encryption can hide such contents from the servers, metadata leakage remains significant. The goal of our work is to develop a file-sharing system that hides metadata---including user identities and file access patterns.

Metal is the first file-sharing system that hides such metadata from malicious users and that has a latency of only a few seconds. The core of Metal consists of a new two-server multi-user oblivious RAM (ORAM) scheme, which is secure against malicious users, a metadata hiding access control protocol, and a capability sharing protocol.

Compared with the state-of-the-art malicious-user file-sharing scheme PIR-MCORAM (Maffei et al.'17), which does not hide user identities, Metal hides the user identities and is 500x faster (in terms of amortized latency) or 10^5x faster (in terms of worst-case latency).

View More Papers

IMP4GT: IMPersonation Attacks in 4G NeTworks

David Rupprecht (Ruhr University Bochum), Katharina Kohls (Ruhr University Bochum), Thorsten Holz (Ruhr University Bochum), Christina Poepper (NYU Abu Dhabi)

Read More

Poseidon: Mitigating Volumetric DDoS Attacks with Programmable Switches

Menghao Zhang (Tsinghua University), Guanyu Li (Tsinghua University), Shicheng Wang (Tsinghua University), Chang Liu (Tsinghua University), Ang Chen (Rice University), Hongxin Hu (Clemson University), Guofei Gu (Texas A&M University), Qi Li (Tsinghua University), Mingwei Xu (Tsinghua University), Jianping Wu (Tsinghua University)

Read More

Finding Safety in Numbers with Secure Allegation Escrows

Venkat Arun (Massachusetts Institute of Technology), Aniket Kate (Purdue University), Deepak Garg (Max Planck Institute for Software Systems), Peter Druschel (Max Planck Institute for Software Systems), Bobby Bhattacharjee (University of Maryland)

Read More