Hui Lin (University of Nevada, Reno), Jianing Zhuang (University of Nevada, Reno), Yih-Chun Hu (University of Illinois, Urbana-Champaign), Huayu Zhou (University of Nevada, Reno)

Reconnaissance is critical for adversaries to prepare attacks causing physical damage in industrial control systems (ICS) like smart power grids. Disrupting the reconnaissance is challenging. The state-of-the-art moving target defense (MTD) techniques based on mimicking and simulating system behaviors do not consider the physical infrastructure of power grids and can be easily identified.

To overcome those challenges, we propose physical function virtualization (PFV) that ``hooks'' network interactions with real physical devices and uses them to build lightweight virtual nodes following the actual implementation of network stacks, system invariants, and physical state variations of real devices. On top of PFV, we propose DefRec, a defense mechanism that significantly increases the reconnaissance efforts for adversaries to obtain the knowledge of power grids' cyber-physical infrastructures. By randomizing communications and crafting decoy data for the virtual physical nodes, DefRec can mislead adversaries into designing damage-free attacks. We implement PFV and DefRec in the ONOS network operating system and evaluate them in a cyber-physical testbed, which uses real devices from different vendors and HP physical switches to simulate six power grids. The experiment results show that with negligible overhead, PFV can accurately follow the behavior of real devices. DefRec can significantly delay passive attacks for at least five months and isolate proactive attacks with less than $10^{-30}$ false negatives.

View More Papers

HotFuzz: Discovering Algorithmic Denial-of-Service Vulnerabilities Through Guided Micro-Fuzzing

William Blair (Boston University), Andrea Mambretti (Northeastern University), Sajjad Arshad (Northeastern University), Michael Weissbacher (Northeastern University), William Robertson (Northeastern University), Engin Kirda (Northeastern University), Manuel Egele (Boston University)

Read More

Unicorn: Runtime Provenance-Based Detector for Advanced Persistent Threats

Xueyuan Han (Harvard University), Thomas Pasquier (University of Bristol), Adam Bates (University of Illinois at Urbana-Champaign), James Mickens (Harvard University), Margo Seltzer (University of British Columbia)

Read More

Packet-Level Signatures for Smart Home Devices

Rahmadi Trimananda (University of California, Irvine), Janus Varmarken (University of California, Irvine), Athina Markopoulou (University of California, Irvine), Brian Demsky (University of California, Irvine)

Read More

Encrypted DNS –> Privacy? A Traffic Analysis Perspective

Sandra Siby (EPFL), Marc Juarez (University of Southern California), Claudia Diaz (imec-COSIC KU Leuven), Narseo Vallina-Rodriguez (IMDEA Networks Institute), Carmela Troncoso (EPFL)

Read More