Christopher Ellis (The Ohio State University), Yue Zhang (Drexel University), Mohit Kumar Jangid (The Ohio State University), Shixuan Zhao (The Ohio State University), Zhiqiang Lin (The Ohio State University)

Wireless technologies like Bluetooth Low Energy (BLE) and Wi-Fi are essential to the Internet of Things (IoT), facilitating seamless device communication without physical connections. However, this convenience comes at a cost—exposed data exchanges that are susceptible to observation by attackers, leading to serious security and privacy threats such as device tracking. Although protocol designers have traditionally relied on strategies like address and identity randomization as a countermeasure, our research reveals that these attacks remain a significant threat due to a historically overlooked, fundamental flaw in exclusive-use wireless communication. We define _exclusive-use_ as a scenario where devices are designed to provide functionality solely to an
associated or paired device. The unique communication patterns inherent in these relationships create an observable boolean side-channel that attackers can exploit to discover whether two devices “trust” each other. This information leak allows for the deanonymization of devices, enabling tracking even in the presence of modern countermeasures. We introduce our tracking attacks as _IDBleed_ and demonstrate that BLE and Wi-Fi protocols that support confidentiality, integrity, and authentication remain vulnerable to deanonymization due to this fundamental flaw in exclusive-use communication patterns. Finally, we propose and quantitatively evaluate a generalized, privacy-preserving mitigation we call _Anonymization Layer_ to find a negligible 2% approximate overhead in performance and power consumption on tested smartphones and PCs.

View More Papers

“I’m 73, you can’t expect me to have multiple...

Ashley Sheil (Munster Technological University), Jacob Camilleri (Munster Technological University), Michelle O Keeffe (Munster Technological University), Melanie Gruben (Munster Technological University), Moya Cronin (Munster Technological University) and Hazel Murray (Munster Technological University)

Read More

On the Realism of LiDAR Spoofing Attacks against Autonomous...

Takami Sato (University of California, Irvine), Ryo Suzuki (Keio University), Yuki Hayakawa (Keio University), Kazuma Ikeda (Keio University), Ozora Sako (Keio University), Rokuto Nagata (Keio University), Ryo Yoshida (Keio University), Qi Alfred Chen (University of California, Irvine), Kentaro Yoshioka (Keio University)

Read More

Characterizing the Impact of Audio Deepfakes in the Presence...

Magdalena Pasternak (University of Florida), Kevin Warren (University of Florida), Daniel Olszewski (University of Florida), Susan Nittrouer (University of Florida), Patrick Traynor (University of Florida), Kevin Butler (University of Florida)

Read More

Can a Cybersecurity Question Answering Assistant Help Change User...

Lea Duesterwald (Carnegie Mellon University), Ian Yang (Carnegie Mellon University), Norman Sadeh (Carnegie Mellon University)

Read More