Yue Duan (Cornell University), Xuezixiang Li (UC Riverside), Jinghan Wang (UC Riverside), Heng Yin (UC Riverside)

Binary diffing analysis quantitatively measures the differences between two given binaries and produces fine-grained basic block matching. It has been widely used to enable different kinds of critical security analysis. However, all existing program analysis and machine learning based techniques suffer from low accuracy, poor scalability, coarse granularity, or require extensive labeled training data to function. In this paper, we propose an unsupervised program-wide code representation learning technique to solve the problem. We rely on both the code semantic information and the program-wide control flow information to generate block embeddings. Furthermore, we propose a k-hop greedy matching algorithm to find the optimal diffing results using the generated block embeddings. We implement a prototype called DeepBinDiff and evaluate its effectiveness and efficiency with large number of binaries. The results show that our tool could outperform the state-of-the-art binary diffing tools by a large margin for both cross-version and cross-optimization level diffing. A case study for OpenSSL using real-world vulnerabilities further demonstrates the usefulness of our system.

View More Papers

MACAO: A Maliciously-Secure and Client-Efficient Active ORAM Framework

Thang Hoang (University of South Florida), Jorge Guajardo (Robert Bosch Research and Technology Center), Attila Yavuz (University of South Florida)

Read More

Hold the Door! Fingerprinting Your Car Key to Prevent...

Kyungho Joo (Korea University), Wonsuk Choi (Korea University), Dong Hoon Lee (Korea University)

Read More

Secure Sublinear Time Differentially Private Median Computation

Jonas Böhler (SAP Security Research), Florian Kerschbaum (University of Waterloo)

Read More

Withdrawing the BGP Re-Routing Curtain: Understanding the Security Impact...

Jared M. Smith (University of Tennessee, Knoxville), Kyle Birkeland (University of Tennessee, Knoxville), Tyler McDaniel (University of Tennessee, Knoxville), Max Schuchard (University of Tennessee, Knoxville)

Read More