Yue Duan (Cornell University), Xuezixiang Li (UC Riverside), Jinghan Wang (UC Riverside), Heng Yin (UC Riverside)

Binary diffing analysis quantitatively measures the differences between two given binaries and produces fine-grained basic block matching. It has been widely used to enable different kinds of critical security analysis. However, all existing program analysis and machine learning based techniques suffer from low accuracy, poor scalability, coarse granularity, or require extensive labeled training data to function. In this paper, we propose an unsupervised program-wide code representation learning technique to solve the problem. We rely on both the code semantic information and the program-wide control flow information to generate block embeddings. Furthermore, we propose a k-hop greedy matching algorithm to find the optimal diffing results using the generated block embeddings. We implement a prototype called DeepBinDiff and evaluate its effectiveness and efficiency with large number of binaries. The results show that our tool could outperform the state-of-the-art binary diffing tools by a large margin for both cross-version and cross-optimization level diffing. A case study for OpenSSL using real-world vulnerabilities further demonstrates the usefulness of our system.

View More Papers

SPEECHMINER: A Framework for Investigating and Measuring Speculative Execution...

Yuan Xiao (The Ohio State University), Yinqian Zhang (The Ohio State University), Radu Teodorescu (The Ohio State University)

Read More

Dynamic Searchable Encryption with Small Client Storage

Ioannis Demertzis (University of Maryland), Javad Ghareh Chamani (Hong Kong University of Science and Technology & Sharif University of Technology), Dimitrios Papadopoulos (Hong Kong University of Science and Technology), Charalampos Papamanthou (University of Maryland)

Read More

The Attack of the Clones Against Proof-of-Authority

Parinya Ekparinya (University of Sydney), Vincent Gramoli (University of Sydney and CSIRO-Data61), Guillaume Jourjon (CSIRO-Data61)

Read More