Xiaochen Li (University of Virginia), Zhan Qin (Zhejiang University), Kui Ren (Zhejiang University), Chen Gong (University of Virginia), Shuya Feng (University of Connecticut), Yuan Hong (University of Connecticut), Tianhao Wang (University of Virginia)

The research on tasks involving differentially private data stream releases has traditionally centered around real-time scenarios. However, not all data streams inherently demand real-time releases, and achieving such releases is challenging due to network latency and processing constraints in practical settings. We delve into the advantages of introducing a delay time in stream releases. Concentrating on the event-level privacy setting, we discover that incorporating a delay can overcome limitations faced by current approaches, thereby unlocking substantial potential for improving accuracy.

Building on these insights, we developed a framework for data stream releases that allows for delays. Capitalizing on data similarity and relative order characteristics, we devised two optimization strategies, group-based and order-based optimizations, to aid in reducing the added noise and post-processing of noisy data. Additionally, we introduce a novel sensitivity truncation mechanism, significantly further reducing the amount of introduced noise. Our comprehensive experimental results demonstrate that, on a data stream of length $18,319$, allowing a delay of $10$ timestamps enables the proposed approaches to achieve a remarkable up to a $30times$ improvement in accuracy compared to baseline methods.
Our code is open-sourced.

View More Papers

Logical Maneuvers: Detecting and Mitigating Adversarial Hardware Faults in...

Fatemeh Khojasteh Dana, Saleh Khalaj Monfared, Shahin Tajik (Worcester Polytechnic Institute)

Read More

The Skeleton Keys: A Large Scale Analysis of Credential...

Yizhe Shi (Fudan University), Zhemin Yang (Fudan University), Kangwei Zhong (Fudan University), Guangliang Yang (Fudan University), Yifan Yang (Fudan University), Xiaohan Zhang (Fudan University), Min Yang (Fudan University)

Read More

DeFiIntel: A Dataset Bridging On-Chain and Off-Chain Data for...

Iori Suzuki (Graduate School of Environment and Information Sciences, Yokohama National University), Yin Minn Pa Pa (Institute of Advanced Sciences, Yokohama National University), Nguyen Thi Van Anh (Institute of Advanced Sciences, Yokohama National University), Katsunari Yoshioka (Graduate School of Environment and Information Sciences, Yokohama National University)

Read More

LeoCommon – A Ground Station Observatory Network for LEO...

Eric Jedermann, Martin Böh (University of Kaiserslautern), Martin Strohmeier (armasuisse Science & Technology), Vincent Lenders (Cyber-Defence Campus, armasuisse Science & Technology), Jens Schmitt (University of Kaiserslautern)

Read More