Xiaochen Li (University of Virginia), Zhan Qin (Zhejiang University), Kui Ren (Zhejiang University), Chen Gong (University of Virginia), Shuya Feng (University of Connecticut), Yuan Hong (University of Connecticut), Tianhao Wang (University of Virginia)

The research on tasks involving differentially private data stream releases has traditionally centered around real-time scenarios. However, not all data streams inherently demand real-time releases, and achieving such releases is challenging due to network latency and processing constraints in practical settings. We delve into the advantages of introducing a delay time in stream releases. Concentrating on the event-level privacy setting, we discover that incorporating a delay can overcome limitations faced by current approaches, thereby unlocking substantial potential for improving accuracy.

Building on these insights, we developed a framework for data stream releases that allows for delays. Capitalizing on data similarity and relative order characteristics, we devised two optimization strategies, group-based and order-based optimizations, to aid in reducing the added noise and post-processing of noisy data. Additionally, we introduce a novel sensitivity truncation mechanism, significantly further reducing the amount of introduced noise. Our comprehensive experimental results demonstrate that, on a data stream of length $18,319$, allowing a delay of $10$ timestamps enables the proposed approaches to achieve a remarkable up to a $30times$ improvement in accuracy compared to baseline methods.
Our code is open-sourced.

View More Papers

SCRUTINIZER: Towards Secure Forensics on Compromised TrustZone

Yiming Zhang (Southern University of Science and Technology and The Hong Kong Polytechnic University), Fengwei Zhang (Southern University of Science and Technology), Xiapu Luo (The Hong Kong Polytechnic University), Rui Hou (Institute of Information Engineering, Chinese Academy of Sciences), Xuhua Ding (Singapore Management University), Zhenkai Liang (National University of Singapore), Shoumeng Yan (Ant Group), Tao…

Read More

Tweezers: A Framework for Security Event Detection via Event...

Jian Cui (Indiana University), Hanna Kim (KAIST), Eugene Jang (S2W Inc.), Dayeon Yim (S2W Inc.), Kicheol Kim (S2W Inc.), Yongjae Lee (S2W Inc.), Jin-Woo Chung (S2W Inc.), Seungwon Shin (KAIST), Xiaojing Liao (Indiana University)

Read More

Density Boosts Everything: A One-stop Strategy for Improving Performance,...

Jianwen Tian (Academy of Military Sciences), Wei Kong (Zhejiang Sci-Tech University), Debin Gao (Singapore Management University), Tong Wang (Academy of Military Sciences), Taotao Gu (Academy of Military Sciences), Kefan Qiu (Beijing Institute of Technology), Zhi Wang (Nankai University), Xiaohui Kuang (Academy of Military Sciences)

Read More

The Kids Are All Right: Investigating the Susceptibility of...

Elijah Bouma-Sims (Carnegie Mellon University), Lily Klucinec (Carnegie Mellon University), Mandy Lanyon (Carnegie Mellon University), Julie Downs (Carnegie Mellon University), Lorrie Faith Cranor (Carnegie Mellon University)

Read More