Ren Ding (Georgia Institute of Technology), Hong Hu (Georgia Institute of Technology), Wen Xu (Georgia Institute of Technology), Taesoo Kim (Georgia Institute of Technology)

Software vendors collect crash reports from end-users to assist debugging and testing of their products. However, crash reports may contain user’s private information, like names and passwords, rendering users hesitated to share the crash report with developers. We need a mechanism to protect user’s privacy from crash reports on the client-side, and meanwhile, keep sufficient information to support server-side debugging.

In this paper, we propose the DESENSITIZATION technique that generates privacy-aware and attack-preserving crash reports from crashed processes. Our tool uses lightweight methods to identify bug- and attack-related data from the memory, and removes other data to protect user’s privacy. Since the desensitized memory has more null bytes, we store crash reports in spare files to save the network bandwidth and the server-side storage. We prototype DESENSITIZATION and apply it to a large number of crashes from several real-world programs, like browser and JavaScript engine. The result shows that our DESENSITIZATION technique can eliminate 80.9% of non-zero bytes from coredumps, and 49.0% from minidumps. The desensitized crash report can be 50.5% smaller than the original size, which significantly saves resources for report submission and storage. Our DESENSITIZATION technique is a push-button solution for the privacy-aware crash report.

View More Papers

Trident: Efficient 4PC Framework for Privacy Preserving Machine Learning

Harsh Chaudhari (Indian Institute of Science, Bangalore), Rahul Rachuri (Aarhus University, Denmark), Ajith Suresh (Indian Institute of Science, Bangalore)

Read More

Mind the Portability: A Warriors Guide through Realistic Profiled...

Shivam Bhasin (Nanyang Technological University), Anupam Chattopadhyay (Nanyang Technological University), Annelie Heuser (Univ Rennes, Inria, CNRS, IRISA), Dirmanto Jap (Nanyang Technological University), Stjepan Picek (Delft University of Technology), Ritu Ranjan Shrivastwa (Secure-IC)

Read More

Genotype Extraction and False Relative Attacks: Security Risks to...

Peter Ney (University of Washington), Luis Ceze (University of Washington), Tadayoshi Kohno (University of Washington)

Read More

FlowPrint: Semi-Supervised Mobile-App Fingerprinting on Encrypted Network Traffic

Thijs van Ede (University of Twente), Riccardo Bortolameotti (Bitdefender), Andrea Continella (UC Santa Barbara), Jingjing Ren (Northeastern University), Daniel J. Dubois (Northeastern University), Martina Lindorfer (TU Wien), David Choffnes (Northeastern University), Maarten van Steen (University of Twente), Andreas Peter (University of Twente)

Read More