Ren Ding (Georgia Institute of Technology), Hong Hu (Georgia Institute of Technology), Wen Xu (Georgia Institute of Technology), Taesoo Kim (Georgia Institute of Technology)

Software vendors collect crash reports from end-users to assist debugging and testing of their products. However, crash reports may contain user’s private information, like names and passwords, rendering users hesitated to share the crash report with developers. We need a mechanism to protect user’s privacy from crash reports on the client-side, and meanwhile, keep sufficient information to support server-side debugging.

In this paper, we propose the DESENSITIZATION technique that generates privacy-aware and attack-preserving crash reports from crashed processes. Our tool uses lightweight methods to identify bug- and attack-related data from the memory, and removes other data to protect user’s privacy. Since the desensitized memory has more null bytes, we store crash reports in spare files to save the network bandwidth and the server-side storage. We prototype DESENSITIZATION and apply it to a large number of crashes from several real-world programs, like browser and JavaScript engine. The result shows that our DESENSITIZATION technique can eliminate 80.9% of non-zero bytes from coredumps, and 49.0% from minidumps. The desensitized crash report can be 50.5% smaller than the original size, which significantly saves resources for report submission and storage. Our DESENSITIZATION technique is a push-button solution for the privacy-aware crash report.

View More Papers

Designing a Better Browser for Tor with BLAST

Tao Wang (Hong Kong University of Science and Technology)

Read More

DISCO: Sidestepping RPKI's Deployment Barriers

Tomas Hlavacek (Fraunhofer SIT), Italo Cunha (Universidade Federal de Minas Gerais), Yossi Gilad (Hebrew University of Jerusalem), Amir Herzberg (University of Connecticut), Ethan Katz-Bassett (Columbia University), Michael Schapira (Hebrew University of Jerusalem), Haya Shulman (Fraunhofer SIT)

Read More

Poseidon: Mitigating Volumetric DDoS Attacks with Programmable Switches

Menghao Zhang (Tsinghua University), Guanyu Li (Tsinghua University), Shicheng Wang (Tsinghua University), Chang Liu (Tsinghua University), Ang Chen (Rice University), Hongxin Hu (Clemson University), Guofei Gu (Texas A&M University), Qi Li (Tsinghua University), Mingwei Xu (Tsinghua University), Jianping Wu (Tsinghua University)

Read More

Encrypted DNS –> Privacy? A Traffic Analysis Perspective

Sandra Siby (EPFL), Marc Juarez (University of Southern California), Claudia Diaz (imec-COSIC KU Leuven), Narseo Vallina-Rodriguez (IMDEA Networks Institute), Carmela Troncoso (EPFL)

Read More