Minghong Fang (University of Louisville), Seyedsina Nabavirazavi (Florida International University), Zhuqing Liu (University of North Texas), Wei Sun (Wichita State University), Sundararaja Iyengar (Florida International University), Haibo Yang (Rochester Institute of Technology)

Federated learning (FL) allows multiple clients to collaboratively train a global machine learning model through a server, without exchanging their private training data. However, the decentralized aspect of FL makes it susceptible to poisoning attacks, where malicious clients can manipulate the global model by sending altered local model updates. To counter these attacks, a variety of aggregation rules designed to be resilient to Byzantine failures have been introduced. Nonetheless, these methods can still be vulnerable to sophisticated attacks or depend on unrealistic assumptions about the server. In this paper, we demonstrate that there is no need to design new Byzantine-robust aggregation rules; instead, FL can be secured by enhancing the robustness of well-established aggregation rules. To this end, we present FoundationFL, a novel defense mechanism against poisoning attacks. FoundationFL involves the server generating synthetic updates after receiving local model updates from clients. It then applies existing Byzantine-robust foundational aggregation rules, such as Trimmed-mean or Median, to combine clients' model updates with the synthetic ones. We theoretically establish the convergence performance of FoundationFL under Byzantine settings. Comprehensive experiments across several real-world datasets validate the efficiency of our FoundationFL method.

View More Papers

ReThink: Reveal the Threat of Electromagnetic Interference on Power...

Fengchen Yang (Zhejiang University; ZJU QI-ANXIN IoT Security Joint Labratory), Zihao Dan (Zhejiang University; ZJU QI-ANXIN IoT Security Joint Labratory), Kaikai Pan (Zhejiang University; ZJU QI-ANXIN IoT Security Joint Labratory), Chen Yan (Zhejiang University; ZJU QI-ANXIN IoT Security Joint Labratory), Xiaoyu Ji (Zhejiang University; ZJU QI-ANXIN IoT Security Joint Labratory), Wenyuan Xu (Zhejiang University; ZJU…

Read More

MOBIDOJO: A Virtual Security Combat Platform for 5G Cellular...

Hyunwoo Lee (Ohio State University), Haohuang Wen (Ohio State University), Phillip Porras (SRI), Vinod Yegneswaran (SRI), Ashish Gehani (SRI), Prakhar Sharma (SRI), Zhiqiang Lin (Ohio State University)

Read More

The Road to Trust: Building Enclaves within Confidential VMs

Wenhao Wang (Key Laboratory of Cyberspace Security Defense, Institute of Information Engineering, CAS), Linke Song (Key Laboratory of Cyberspace Security Defense, Institute of Information Engineering, CAS), Benshan Mei (Key Laboratory of Cyberspace Security Defense, Institute of Information Engineering, CAS), Shuang Liu (Ant Group), Shijun Zhao (Key Laboratory of Cyberspace Security Defense, Institute of Information Engineering,…

Read More

SecuWear: Secure Data Sharing Between Wearable Devices

Sujin Han (KAIST) Diana A. Vasile (Nokia Bell Labs), Fahim Kawsar (Nokia Bell Labs, University of Glasgow), Chulhong Min (Nokia Bell Labs)

Read More