Hao Yu (National University of Defense Technology), Chuan Ma (Chongqing University), Xinhang Wan (National University of Defense Technology), Jun Wang (National University of Defense Technology), Tao Xiang (Chongqing University), Meng Shen (Beijing Institute of Technology, Beijing, China), Xinwang Liu (National University of Defense Technology)

Graph Neural Networks (GNNs) are vulnerable to backdoor attacks, where triggers inserted into original graphs cause adversary-determined predictions. Backdoor attacks on GNNs, typically focusing on node classification tasks, are categorized by dirty- and clean-label attacks and pose challenges due to the interconnected nature of normal and poisoned nodes. Current defenses are indeed circumvented by sophisticated triggers and often rely on strong assumptions borrowed from other domains (e.g., rapid loss drops on poisoned images). They lead to high attack risks, failing to effectively protect against both dirty- and clean-label attacks simultaneously. To tackle these challenges, we propose DShield, a comprehensive defense framework with a discrepancy learning mechanism to defend against various graph backdoor attacks. Specifically, we reveal two vital facts during the attacking process: *semantic drift* where dirty-label attacks modify the semantic information of poisoned nodes, and *attribute over-emphasis* where clean-label attacks exaggerate specific attributes to enforce adversary-determined predictions. Motivated by those, DShield employs a self-supervised learning framework to construct a model without relying on manipulated label information. Subsequently, it utilizes both the self-supervised and backdoored models to analyze discrepancies in semantic information and attribute importance, effectively filtering out poisoned nodes. Finally, DShield trains normal models using the preserved nodes, thereby minimizing the impact of poisoned nodes. Compared with 6 state-of-the-art defenses under 21 backdoor attacks, we conduct evaluations on 7 datasets with 2 victim models to demonstrate that DShield effectively mitigates backdoor threats with minimal degradation in performance on normal nodes. For instance, on the Cora dataset, DShield reduces the attack success rate to 1.33% from 54.47% achieved by the second-best defense Prune while maintaining an 82.15% performance on normal nodes. The source code is available at https://github.com/csyuhao/DShield.

View More Papers

GadgetMeter: Quantitatively and Accurately Gauging the Exploitability of Speculative...

Qi Ling (Purdue University), Yujun Liang (Tsinghua University), Yi Ren (Tsinghua University), Baris Kasikci (University of Washington and Google), Shuwen Deng (Tsinghua University)

Read More

Understanding reCAPTCHAv2 via a Large-Scale Live User Study

Andrew Searles (University of California Irvine), Renascence Tarafder Prapty (University of California Irvine), Gene Tsudik (University of California Irvine)

Read More

ICSQuartz: Scan Cycle-Aware and Vendor-Agnostic Fuzzing for Industrial Control...

Corban Villa (New York University Abu Dhabi), Constantine Doumanidis (New York University Abu Dhabi), Hithem Lamri (New York University Abu Dhabi), Prashant Hari Narayan Rajput (InterSystems), Michail Maniatakos (New York University Abu Dhabi)

Read More

HADES Attack: Understanding and Evaluating Manipulation Risks of Email...

Ruixuan Li (Tsinghua University), Chaoyi Lu (Tsinghua University), Baojun Liu (Tsinghua University;Zhongguancun Laboratory), Yunyi Zhang (Tsinghua University), Geng Hong (Fudan University), Haixin Duan (Tsinghua University;Zhongguancun Laboratory), Yanzhong Lin (Coremail Technology Co. Ltd), Qingfeng Pan (Coremail Technology Co. Ltd), Min Yang (Fudan University), Jun Shao (Zhejiang Gongshang University)

Read More