Ruisheng Shi (Beijing University of Posts and Telecommunications), Zhiyuan Peng (Beijing University of Posts and Telecommunications), Lina Lan (Beijing University of Posts and Telecommunications), Yulian Ge (Beijing University of Posts and Telecommunications), Peng Liu (Penn State University), Qin Wang (CSIRO Data61), Juan Wang (Wuhan University)

Eclipse attack is a major threat to the blockchain network layer, wherein an attacker isolates a target node by monopolizing all its connections, cutting it off from the rest of the network. Despite the attack's demonstrated effectiveness in Bitcoin (Usenix'15, SP'20, Usenix'21, CCS'21, SP'23) and partially in Ethereum (NDSS'23, SP'23), its applicability to a wider range of blockchain systems remains uncertain.

In this paper, we investigate eclipse attacks against Monero, a blockchain system known for its strong anonymity and pioneering the use of Dandelion++ (the state-of-the-art blockchain network layer protocol for transaction privacy protection). Our analysis of Monero's connection management mechanism reveals that existing eclipse attacks are surprisingly ineffective against Monero. We accordingly introduce the first practical eclipse attack against Monero by proposing a connection reset approach, which forces the target node to drop all benign connections and reconnect with malicious nodes. Specifically, we outline two methods for executing such an attack. The first one exploits the private transaction mechanisms, while the second method leverages the differences in propagation between stem transactions and fluff transactions under Dandelion++. Our attack is not only applicable to Monero but to all blockchain systems utilizing Dandelion++ and similar connection management strategies.

We conduct experiments on the Monero mainnet. Evaluation results confirm the feasibility of our attack. Unlike existing eclipse attacks, our connection reset-based approach does not require restarting the target node, significantly accelerating the attack process and making it more controllable. We also provide countermeasures to mitigate the proposed eclipse attack while minimizing the impact on Monero. In addition, we have ethically reported our investigation to Monero official team.

View More Papers

Modeling End-User Affective Discomfort With Mobile App Permissions Across...

Yuxi Wu (Georgia Institute of Technology and Northeastern University), Jacob Logas (Georgia Institute of Technology), Devansh Ponda (Georgia Institute of Technology), Julia Haines (Google), Jiaming Li (Google), Jeffrey Nichols (Apple), W. Keith Edwards (Georgia Institute of Technology), Sauvik Das (Carnegie Mellon University)

Read More

SCRUTINIZER: Towards Secure Forensics on Compromised TrustZone

Yiming Zhang (Southern University of Science and Technology and The Hong Kong Polytechnic University), Fengwei Zhang (Southern University of Science and Technology), Xiapu Luo (The Hong Kong Polytechnic University), Rui Hou (Institute of Information Engineering, Chinese Academy of Sciences), Xuhua Ding (Singapore Management University), Zhenkai Liang (National University of Singapore), Shoumeng Yan (Ant Group), Tao…

Read More

Rondo: Scalable and Reconfiguration-Friendly Randomness Beacon

Xuanji Meng (Tsinghua University), Xiao Sui (Shandong University), Zhaoxin Yang (Tsinghua University), Kang Rong (Blockchain Platform Division,Ant Group), Wenbo Xu (Blockchain Platform Division,Ant Group), Shenglong Chen (Blockchain Platform Division,Ant Group), Ying Yan (Blockchain Platform Division,Ant Group), Sisi Duan (Tsinghua University)

Read More

SketchFeature: High-Quality Per-Flow Feature Extractor Towards Security-Aware Data Plane

Sian Kim (Ewha Womans University), Seyed Mohammad Mehdi Mirnajafizadeh (Wayne State University), Bara Kim (Korea University), Rhongho Jang (Wayne State University), DaeHun Nyang (Ewha Womans University)

Read More