Sandra Siby (EPFL), Marc Juarez (University of Southern California), Claudia Diaz (imec-COSIC KU Leuven), Narseo Vallina-Rodriguez (IMDEA Networks Institute), Carmela Troncoso (EPFL)

Virtually every connection to an Internet service is preceded by a DNS lookup which is performed without any traffic-level protection, thus enabling manipulation, redirection, surveillance, and censorship. To address these issues, large organizations such as Google and Cloudflare are deploying recently standardized protocols that encrypt DNS traffic between end users and recursive resolvers such as DNS-over-TLS (DoT) and DNS-over-HTTPS (DoH). In this paper, we examine whether encrypting DNS traffic can protect users from traffic analysis-based monitoring and censoring. We propose a novel feature set to perform the attacks, as those used to attack HTTPS or Tor traffic are not suitable for DNS’ characteristics. We show that traffic analysis enables the identification of domains with high accuracy in closed and open world settings, using 124 times less data than attacks on HTTPS flows. We find that factors such as location, resolver, platform, or client do mitigate the attacks performance but they are far from completely stopping them. Our results indicate that DNS-based censorship is still possible on encrypted DNS traffic. In fact, we demonstrate that the standardized padding schemes are not effective. Yet, Tor — which does not effectively mitigate traffic analysis attacks on web traffic— is a good defense against DoH traffic analysis.

View More Papers

Cross-Origin State Inference (COSI) Attacks: Leaking Web Site States...

Avinash Sudhodanan (IMDEA Software Institute), Soheil Khodayari (CISPA Helmholtz Center for Information Security), Juan Caballero (IMDEA Software Institute)

Read More

HotFuzz: Discovering Algorithmic Denial-of-Service Vulnerabilities Through Guided Micro-Fuzzing

William Blair (Boston University), Andrea Mambretti (Northeastern University), Sajjad Arshad (Northeastern University), Michael Weissbacher (Northeastern University), William Robertson (Northeastern University), Engin Kirda (Northeastern University), Manuel Egele (Boston University)

Read More

Genotype Extraction and False Relative Attacks: Security Risks to...

Peter Ney (University of Washington), Luis Ceze (University of Washington), Tadayoshi Kohno (University of Washington)

Read More

NoJITsu: Locking Down JavaScript Engines

Taemin Park (University of California, Irvine), Karel Dhondt (imec-DistriNet, KU Leuven), David Gens (University of California, Irvine), Yeoul Na (University of California, Irvine), Stijn Volckaert (imec-DistriNet, KU Leuven), Michael Franz (University of California, Irvine, USA)

Read More