Tianhao Wang (Purdue University), Milan Lopuhaä-Zwakenberg (Eindhoven University of Technology), Zitao Li (Purdue University), Boris Skoric (Eindhoven University of Technology), Ninghui Li (Purdue University)

Local Differential Privacy (LDP) protects user privacy from the data collector. LDP protocols have been increasingly deployed in the industry. A basic building block is frequency oracle (FO) protocols, which estimate frequencies of values. While several FO protocols have been proposed, the design goal does not lead to optimal results for answering many queries. In this paper, we show that adding post-processing steps to FO protocols by exploiting the knowledge that all individual frequencies should be non-negative and they sum up to one can lead to significantly better accuracy for a wide range of tasks, including frequencies of individual values, frequencies of the most frequent values, and frequencies of subsets of values. We consider 10 different methods that exploit this knowledge differently. We establish theoretical relationships between some of them and conducted extensive experimental evaluations to understand which methods should be used for different query tasks.

View More Papers

SVLAN: Secure & Scalable Network Virtualization

Jonghoon Kwon (ETH), Taeho Lee (ETH), Claude Hähni (ETH), Adrian Perrig (ETH)

Read More

Encrypted DNS –> Privacy? A Traffic Analysis Perspective

Sandra Siby (EPFL), Marc Juarez (University of Southern California), Claudia Diaz (imec-COSIC KU Leuven), Narseo Vallina-Rodriguez (IMDEA Networks Institute), Carmela...

Read More

Data-Driven Debugging for Functional Side Channels

Saeid Tizpaz-Niari (University of Colorado Boulder), Pavol Černý (TU Wien), Ashutosh Trivedi (University of Colorado Boulder)

Read More

Custos: Practical Tamper-Evident Auditing of Operating Systems Using Trusted...

Riccardo Paccagnella (University of Illinois at Urbana–Champaign), Pubali Datta (University of Illinois at Urbana–Champaign), Wajih Ul Hassan (University of Illinois...

Read More