Xiangyu Guo (University of Toronto), Akshay Kawlay (University of Toronto), Eric Liu (University of Toronto), David Lie (University of Toronto)

As more critical services move onto the web, it has become increasingly important to detect and address vulnerabilities in web applications. These vulnerabilities only occur under specific conditions: when 1) the vulnerable code is executed and 2) the web application is in the required state. If the application is not in the required state, then even if the vulnerable code is executed, the vulnerability may not be triggered. Previous work naively explores the application state by filling every field and triggering every JavaScript event before submitting HTML forms. However, this simplistic approach can fail to satisfy constraints between the web page elements, as well as input format constraints. To address this, we present EvoCrawl, a web crawler that uses evolutionary search to efficiently find different sequences of web interactions. EvoCrawl finds sequences that can successfully submit inputs to web applications and thus explore more code and server-side states than previous approaches. To assess the benefits of EvoCrawl we evaluate it against three state-of-the-art vulnerability scanners on ten web applications. We find that EvoCrawl achieves better code coverage due to its ability to execute code that can only be executed when the application is in a particular state. On average, EvoCrawl achieves a 59% increase in code coverage and successfully submits HTML forms 5x more frequently than the next best tool. By integrating IDOR and XSS vulnerability scanners, we used EvoCrawl to find eight zero-day IDOR and XSS vulnerabilities in WordPress, HotCRP, Kanboard, ImpressCMS, and GitLab.

View More Papers

Evaluating LLMs Towards Automated Assessment of Privacy Policy Understandability

Keika Mori (Deloitte Tohmatsu Cyber LLC, Waseda University), Daiki Ito (Deloitte Tohmatsu Cyber LLC), Takumi Fukunaga (Deloitte Tohmatsu Cyber LLC), Takuya Watanabe (Deloitte Tohmatsu Cyber LLC), Yuta Takata (Deloitte Tohmatsu Cyber LLC), Masaki Kamizono (Deloitte Tohmatsu Cyber LLC), Tatsuya Mori (Waseda University, NICT, RIKEN AIP)

Read More

LLMPirate: LLMs for Black-box Hardware IP Piracy

Vasudev Gohil (Texas A&M University), Matthew DeLorenzo (Texas A&M University), Veera Vishwa Achuta Sai Venkat Nallam (Texas A&M University), Joey See (Texas A&M University), Jeyavijayan Rajendran (Texas A&M University)

Read More

Blindfold: Confidential Memory Management by Untrusted Operating System

Caihua Li (Yale University), Seung-seob Lee (Yale University), Lin Zhong (Yale University)

Read More

Ring of Gyges: Accountable Anonymous Broadcast via Secret-Shared Shuffle

Wentao Dong (City University of Hong Kong), Peipei Jiang (Wuhan University; City University of Hong Kong), Huayi Duan (ETH Zurich), Cong Wang (City University of Hong Kong), Lingchen Zhao (Wuhan University), Qian Wang (Wuhan University)

Read More