Mohit Kumar Jangid (The Ohio State University), Yue Zhang (Computer Science & Engineering, Ohio State University), Zhiqiang Lin (The Ohio State University)

Bluetooth is a leading wireless communication technology used by billions of Internet of Things (IoT) devices today. Its ubiquity demands systematic security scrutiny. A key ingredient in Bluetooth security is secure pairing, which includes Numeric comparison (NC) and Passkey Entry (PE). However, most prior formal efforts have considered only NC, and PE has not yet been formally studied in depth. In this paper, we propose a detailed formal analysis of the PE protocol. In particular, we present a generic formal model, built using Tamarin, to verify the security of PE by precisely capturing the protocol behaviors and attacker capabilities. Encouragingly, it rediscovers three known attacks (confusion attacks, static passcode attacks, and reflection attacks), and more importantly, also uncovers two new attacks (group guessing attacks and ghost attacks) spanning across diverse attack vectors (e.g., static variable reuse, multi-threading, reflection, human error, and compromise device). Finally, after applying fixes to each vulnerability, our model further proves the confidentiality and authentication properties of the PE protocol using an inductive base model.

View More Papers

Reminding Drivers of the Stalking Vehicles on the Road

Wei Sun, Kannan Srinivsan (The Ohio State University)

Read More

Fine-Grained Trackability in Protocol Executions

Ksenia Budykho (Surrey Centre for Cyber Security, University of Surrey, UK), Ioana Boureanu (Surrey Centre for Cyber Security, University of Surrey, UK), Steve Wesemeyer (Surrey Centre for Cyber Security, University of Surrey, UK), Daniel Romero (NCC Group), Matt Lewis (NCC Group), Yogaratnam Rahulan (5G/6G Innovation Centre - 5GIC/6GIC, University of Surrey, UK), Fortunat Rajaona (Surrey…

Read More

Efficient Dynamic Proof of Retrievability for Cold Storage

Tung Le (Virginia Tech), Pengzhi Huang (Cornell University), Attila A. Yavuz (University of South Florida), Elaine Shi (CMU), Thang Hoang (Virginia Tech)

Read More

Paralyzing Drones via EMI Signal Injection on Sensory Communication...

Joonha Jang (KAIST), ManGi Cho (KAIST), Jaehoon Kim (KAIST), Dongkwan Kim (Samsung SDS), Yongdae Kim (KAIST)

Read More