Florian Kerschbaum (University of Waterloo), Erik-Oliver Blass (Airbus), Rasoul Akhavan Mahdavi (University of Waterloo)

In a Private section intersection (PSI) protocol, Alice and Bob compute the intersection of their respective sets without disclosing any element not in the intersection. PSI protocols have been extensively studied in the literature and are deployed in industry. With state-of-the-art protocols achieving optimal asymptotic complexity, performance improvements are rare and can only improve complexity constants. In this paper, we present a new private, extremely efficient comparison protocol that leads to a PSI protocol with low constants. A useful property of our comparison protocol is that it can be divided into an online and an offline phase. All expensive cryptographic operations are performed during the offline phase, and the online phase performs only four fast field operations per comparison. This leads to an incredibly fast online phase, and our evaluation shows that it outperforms related work, including KKRT (CCS'16), VOLE-PSI (EuroCrypt'21), and OKVS (Crypto'21). We also evaluate standard approaches to implement the offline phase using different trust assumptions: cryptographic, hardware, and a third party ("dealer model").

View More Papers

Kids, Cats, and Control: Designing Privacy and Security Dashboard...

Jacob Abbott (Indiana University), Jayati Dev (Indiana University), DongInn Kim (Indiana University), Shakthidhar Reddy Gopavaram (Indiana University), Meera Iyer (Indiana University), Shivani Sadam (Indiana University) , Shirang Mare (Western Washington University), Tatiana Ringenberg (Purdue University), Vafa Andalibi (Indiana University), and L. Jean Camp(Indiana University)

Read More

Paralyzing Drones via EMI Signal Injection on Sensory Communication...

Joonha Jang (KAIST), ManGi Cho (KAIST), Jaehoon Kim (KAIST), Dongkwan Kim (Samsung SDS), Yongdae Kim (KAIST)

Read More

Applying Accessibility Metrics to Measure the Threat Landscape for...

John Breton, AbdelRahman Abdou (Carleton University)

Read More

Fusion: Efficient and Secure Inference Resilient to Malicious Servers

Caiqin Dong (Jinan University), Jian Weng (Jinan University), Jia-Nan Liu (Jinan University), Yue Zhang (Jinan University), Yao Tong (Guangzhou Fongwell Data Limited Company), Anjia Yang (Jinan University), Yudan Cheng (Jinan University), Shun Hu (Jinan University)

Read More