Sikhar Patranabis (ETH Zurich), Debdeep Mukhopadhyay (IIT Kharagpur)

Dynamic searchable symmetric encryption (SSE) supports updates and keyword searches in tandem on outsourced symmetrically encrypted data, while aiming to minimize the information revealed to the (untrusted) host server. The literature on dynamic SSE has identified two crucial security properties in this regard - emph{forward} and emph{backward} privacy. Forward privacy makes it hard for the server to correlate an update operation with previously executed search operations. Backward privacy limits the amount of information learnt by the server about documents that have already been deleted from the database.

To date, work on forward and backward private SSE has focused mainly on single keyword search. However, for any SSE scheme to be truly practical, it should at least support conjunctive keyword search. In this setting, most prior SSE constructions with sub-linear search complexity do not support dynamic databases. The only exception is the scheme of Kamara and Moataz (EUROCRYPT'17); however it only achieves forward privacy. Achieving emph{both} forward and backward privacy, which is the most desirable security notion for any dynamic SSE scheme, has remained open in the setting of conjunctive keyword search.

In this work, we develop the first forward and backward private SSE scheme for conjunctive keyword searches. Our proposed scheme, called Oblivious Dynamic Cross Tags (or ODXT in short), scales to very large arbitrarily-structured databases (including both attribute-value and free-text databases). ODXT provides a realistic trade-off between performance and security by efficiently supporting fast updates and conjunctive keyword searches over very large databases, while incurring only moderate access pattern leakages to the server that conform to existing notions of forward and backward privacy. We precisely define the leakage profile of ODXT, and present a detailed formal analysis of its security. We then demonstrate the practicality of ODXT by developing a prototype implementation and evaluating its performance on real world databases containing millions of documents.

View More Papers

Sn4ke: Practical Mutation Analysis of Tests at Binary Level

Mohsen Ahmadi (Arizona State University), Pantea Kiaei (Worcester Polytechnic Institute), Navid Emamdoost (University of Minnesota)

Read More

A Formal Analysis of the FIDO UAF Protocol

Haonan Feng (Beijing University of Posts and Telecommunications), Hui Li (Beijing University of Posts and Telecommunications), Xuesong Pan (Beijing University of Posts and Telecommunications), Ziming Zhao (University at Buffalo)

Read More

WINNIE : Fuzzing Windows Applications with Harness Synthesis and...

Jinho Jung (Georgia Institute of Technology), Stephen Tong (Georgia Institute of Technology), Hong Hu (Pennsylvania State University), Jungwon Lim (Georgia Institute of Technology), Yonghwi Jin (Georgia Institute of Technology), Taesoo Kim (Georgia Institute of Technology)

Read More

When DNS Goes Dark: Understanding Privacy and Shaping Policy...

Vijay k. Gurbani and Cynthia Hood ( Illinois Institute of Technology), Anita Nikolich (University of Illinois), Henning Schulzrinne (Columbia University) and Radu State (University of Luxembourg)

Read More