Emily Stark

Over the past decade, HTTPS adoption has risen dramatically. The Web PKI has shifted seismically, with browsers imposing new requirements on CAs and server operators. These shifts bring security and privacy improvements for end users, but they have often been driven by incompatible browser changes that break websites, causing frustration for end users as well as server operators. Security-positive breaking changes involve a plethora of choices. Should browsers roll out a change gradually, or rip the band-aid off and deploy it all at once? How do we advertise the change and motivate different players in the ecosystem to update configurations before they break? How do different types and amounts of breakage affect the user experience? And the meta-question: how do we approach such quandaries scientifically? Drawing from several case studies in the HTTPS ecosystem, I'll talk about the science of nudging an ecosystem: methods that the web browser community has developed, and lessons we've learned, for measuring how best to get millions of websites to improve security while minimizing the frustrations of incompatibility.

View More Papers

ALchemist: Fusing Application and Audit Logs for Precise Attack...

Le Yu (Purdue University), Shiqing Ma (Rutgers University), Zhuo Zhang (Purdue University), Guanhong Tao (Purdue University), Xiangyu Zhang (Purdue University), Dongyan Xu (Purdue University), Vincent E. Urias (Sandia National Laboratories), Han Wei Lin (Sandia National Laboratories), Gabriela Ciocarlie (SRI International), Vinod Yegneswaran (SRI International), Ashish Gehani (SRI International)

Read More

(Short) Fooling Perception via Location: A Case of Region-of-Interest...

Kanglan Tang, Junjie Shen, and Qi Alfred Chen (UC Irvine)

Read More

insecure:// Vulnerability Analysis of URI Scheme Handling in Android...

Abdulla Aldoseri (University of Birmingham) and David Oswald (University of Birmingham)

Read More