Taekjin Lee (KAIST, ETRI), Seongil Wi (KAIST), Suyoung Lee (KAIST), Sooel Son (KAIST)

An Unrestricted File Upload (UFU) vulnerability is a critical security threat that enables an adversary to upload her choice of a forged file to a target web server. This bug evolves into an Unrestricted Executable File Upload (UEFU) vulnerability when the adversary is able to conduct remote code execution of the uploaded file via triggering its URL. We design and implement FUSE, the first penetration testing tool designed to discover UFU and UEFU vulnerabilities in server-side PHP web applications. The goal of FUSE is to generate upload requests; each request becomes an exploit payload that triggers a UFU or UEFU vulnerability. However, this approach entails two technical challenges: (1) it should generate an upload request that bypasses all content-filtering checks present in a target web application; and (2) it should preserve the execution semantic of the resulting uploaded file. We address these technical challenges by mutating standard upload requests with carefully designed mutation operations that enable the bypassing of content- filtering checks and do not tamper with the execution of uploaded files. FUSE discovered 30 previously unreported UEFU vulnerabilities, including 15 CVEs from 33 real-world web applications, thereby demonstrating its efficacy in finding code execution bugs via file uploads.

View More Papers

Data-Driven Debugging for Functional Side Channels

Saeid Tizpaz-Niari (University of Colorado Boulder), Pavol Černý (TU Wien), Ashutosh Trivedi (University of Colorado Boulder)

Read More

Bobtail: Improved Blockchain Security with Low-Variance Mining

George Bissias (University of Massachusetts Amherst), Brian N. Levine (University of Massachusetts Amherst)

Read More

Proof of Storage-Time: Efficiently Checking Continuous Data Availability

Giuseppe Ateniese (Stevens Institute of Technology), Long Chen (New Jersey Institute of Technology), Mohammard Etemad (Stevens Institute of Technology), Qiang Tang (New Jersey Institute of Technology)

Read More

Learning-based Practical Smartphone Eavesdropping with Built-in Accelerometer

Zhongjie Ba (Zhejiang University and McGill University), Tianhang Zheng (University of Toronto), Xinyu Zhang (Zhejiang University), Zhan Qin (Zhejiang University), Baochun Li (University of Toronto), Xue Liu (McGill University), Kui Ren (Zhejiang University)

Read More