Qi Ling (Purdue University), Yujun Liang (Tsinghua University), Yi Ren (Tsinghua University), Baris Kasikci (University of Washington and Google), Shuwen Deng (Tsinghua University)

Since their emergence in 2018, speculative execution attacks have proven difficult to fully prevent without substantial performance overhead. This is because most mitigations hurt modern processors' speculative nature, which is essential to many optimization techniques. To address this, numerous scanners have been developed to identify vulnerable code snippets (speculative gadgets) within software applications, allowing mitigations to be applied selectively and thereby minimizing performance degradation.

In this paper, we show that existing speculative gadget scanners lack accuracy, often misclassifying gadgets due to limited modeling of timing properties. Instead, we identify another fundamental condition intrinsic to all speculative attacks—the timing requirement as a race condition inside the gadget. Specifically, the attacker must optimize the race condition between speculated authorization and secret leakage to successfully exploit the gadget. Therefore, we introduce GadgetMeter, a framework designed to quantitatively gauge the exploitability of speculative gadgets based on their timing property. We systematically explore the attacker's power to optimize the race condition inside gadgets (windowing power). A Directed Acyclic Instruction Graph is used to model timing conditions and static analysis and runtime testing are combined to optimize attack patterns and quantify gadget vulnerability. We use GadgetMeter to evaluate gadgets in a wide range of software, including six real-world applications and the Linux kernel. Our result shows that GadgetMeter can accurately identify exploitable speculative gadgets and quantify their vulnerability level, identifying 471 gadgets reported by GadgetMeter works as unexploitable.

View More Papers

FUZZUER: Enabling Fuzzing of UEFI Interfaces on EDK-2

Connor Glosner (Purdue University), Aravind Machiry (Purdue University)

Read More

Secure IP Address Allocation at Cloud Scale

Eric Pauley (University of Wisconsin–Madison), Kyle Domico (University of Wisconsin–Madison), Blaine Hoak (University of Wisconsin–Madison), Ryan Sheatsley (University of Wisconsin–Madison), Quinn Burke (University of Wisconsin–Madison), Yohan Beugin (University of Wisconsin–Madison), Engin Kirda (Northeastern University), Patrick McDaniel (University of Wisconsin–Madison)

Read More

The (Un)usual Suspects – Studying Reasons for Lacking Updates...

Maria Hellenthal (CISPA Helmholtz Center for Information Security), Lena Gotsche (CISPA Helmholtz Center for Information Security), Rafael Mrowczynski (CISPA Helmholtz Center for Information Security), Sarah Kugel (Saarland University), Michael Schilling (CISPA Helmholtz Center for Information Security), Ben Stock (CISPA Helmholtz Center for Information Security)

Read More

ASGARD: Protecting On-Device Deep Neural Networks with Virtualization-Based Trusted...

Myungsuk Moon (Yonsei University), Minhee Kim (Yonsei University), Joonkyo Jung (Yonsei University), Dokyung Song (Yonsei University)

Read More