Song Bian (Beihang University), Zian Zhao (Beihang University), Zhou Zhang (Beihang University), Ran Mao (Beihang University), Kohei Suenaga (Kyoto University), Yier Jin (University of Science and Technology of China), Zhenyu Guan (Beihang University), Jianwei Liu (Beihang University)

We propose a new compiler framework that automates code generation over multiple fully homomorphic encryption (FHE) schemes. While it was recently shown that algorithms combining multiple FHE schemes (e.g., CKKS and TFHE) achieve high execution efficiency and task utility at the same time, developing fast cross-scheme FHE algorithms for real-world applications generally require heavy hand-tuned optimizations by cryptographic experts, resulting in either high usability costs or low computational efficiency. To solve the usability and efficiency dilemma, we design and implement HEIR, a compiler framework based on multi-level intermediate representation (IR). To achieve cross-scheme compilation of efficient FHE circuits, we develop a two-stage code-lowering structure based on our custom IR dialects. First, the plaintext program along with the associated data types are converted into FHE-friendly dialects in the transformation stage. Then, in the optimization stage, we apply FHE-specific optimizations to lower the transformed dialect into our bottom-level FHE library operators. In the experiment, we implement the entire software stack for HEIR, and demonstrate that complex end-to-end programs, such as homomorphic K-Means clustering and homomorphic data aggregation in databases, can easily be compiled to run 72~179× faster than the program generated by the state-of-the-art FHE compilers.

View More Papers

DeGPT: Optimizing Decompiler Output with LLM

Peiwei Hu (Institute of Information Engineering, Chinese Academy of Sciences, Beijing, China), Ruigang Liang (Institute of Information Engineering, Chinese Academy of Sciences, Beijing, China), Kai Chen (Institute of Information Engineering, Chinese Academy of Sciences, China)

Read More

Abusing the Ethereum Smart Contract Verification Services for Fun...

Pengxiang Ma (Huazhong University of Science and Technology), Ningyu He (Peking University), Yuhua Huang (Huazhong University of Science and Technology), Haoyu Wang (Huazhong University of Science and Technology), Xiapu Luo (The Hong Kong Polytechnic University)

Read More

LibAFL QEMU: A Library for Fuzzing-oriented Emulation

Romain Malmain (EURECOM), Andrea Fioraldi (EURECOM), Aurelien Francillon (EURECOM)

Read More

dRR: A Decentralized, Scalable, and Auditable Architecture for RPKI...

Yingying Su (Tsinghua university), Dan Li (Tsinghua university), Li Chen (Zhongguancun Laboratory), Qi Li (Tsinghua university), Sitong Ling (Tsinghua University)

Read More