Christian Niesler (University of Duisburg-Essen), Sebastian Surminski (University of Duisburg-Essen), Lucas Davi (University of Duisburg-Essen)

Memory corruption attacks are a pre-dominant attack vector against IoT devices. Simply updating vulnerable IoT software is not always possible due to unacceptable downtime and a required reboot. These side-effects must be avoided for highly-available embedded systems such as medical devices and, generally speaking, for any embedded system with real-time constraints.
To avoid downtime and reboot of a system, previous research has introduced the concept of hotpatching. However, the existing approaches cannot be applied to resource-constrained IoT devices. Furthermore, possible hardware-related issues have not been addressed, i.e., the inability to directly modify the firmware image due to read-only memory.

In this paper, we present the design and implementation of HERA (Hotpatching of Embedded Real-time Applications) which utilizes hardware-based built-in features of commodity Cortex-M microcontrollers to perform hotpatching of embedded systems. HERA preserves hard real-time constraints while keeping the additional resource usage to a minimum. In a case study, we apply HERA to two vulnerable medical devices. Furthermore, we leverage HERA to patch an existing vulnerability in the FreeRTOS operating system. These applications demonstrate the high practicality and efficiency of our approach.

View More Papers

Exploring The Design Space of Sharing and Privacy Mechanisms...

Abdulmajeed Alqhatani, Heather R. Lipford (University of North Carolina at Charlotte)

Read More

JMPscare: Introspection for Binary-Only Fuzzing

Dominik Maier, Lukas Seidel (TU Berlin)

Read More

An Analysis of First-Party Cookie Exfiltration due to CNAME...

Tongwei Ren (Worcester Polytechnic Institute), Alexander Wittmany (University of Kansas), Lorenzo De Carli (Worcester Polytechnic Institute), Drew Davidsony (University of Kansas)

Read More

SpecTaint: Speculative Taint Analysis for Discovering Spectre Gadgets

Zhenxiao Qi (UC Riverside), Qian Feng (Baidu USA), Yueqiang Cheng (NIO Security Research), Mengjia Yan (MIT), Peng Li (ByteDance), Heng Yin (UC Riverside), Tao Wei (Ant Group)

Read More