Private information retrieval (PIR) enables clients to query and retrieve data from untrusted servers without the untrusted servers learning which data was retrieved.

In this paper, we present a new class of multi-server PIR protocols, which we call emph{heterogeneous PIR (HPIR)}. In such multi-server PIR protocols, the computation and communication overheads imposed on the PIR servers are non-uniform, i.e., some servers handle higher computation/communication burdens than the others. This enables heterogeneous PIR protocols to be suitable for a range of new PIR applications.

What enables us to enforce such heterogeneity is a unique PIR-tailored secret sharing algorithm that we leverage in building our PIR protocol.

We have implemented our HPIR protocol and evaluated its performance in comparison with regular PIR protocols. Our evaluations demonstrate that a querying client can trade off the computation and communication loads of the (heterogeneous) PIR servers by adjusting some parameters. For example in a two server scenario with a heterogeneity degree of $4/1$, to retrieve a $456$KB file from a $0.2$GB database, the rich (i.e., resourceful) PIR server will do $1.1$ seconds worth of computation compared to $0.3$ seconds by the poor (resource-constrained) PIR server; this is while each of the servers would do the same $1$ seconds of computation in a homogeneous settings. Also, for this given example, our HPIR protocol will impose $912$KB communication bandwidth on the rich server compared to $228$KB on the poor server (by contrast to $456$KB overhead on each of the servers for a traditional homogeneous design).

View More Papers

Mind the Portability: A Warriors Guide through Realistic Profiled...

Shivam Bhasin (Nanyang Technological University), Anupam Chattopadhyay (Nanyang Technological University), Annelie Heuser (Univ Rennes, Inria, CNRS, IRISA), Dirmanto Jap (Nanyang...

Read More

Strong Authentication without Temper-Resistant Hardware and Application to Federated...

Zhenfeng Zhang (Chinese Academy of Sciences, University of Chinese Academy of Sciences, and The Joint Academy of Blockchain Innovation), Yuchen...

Read More

FUSE: Finding File Upload Bugs via Penetration Testing

Taekjin Lee (KAIST, ETRI), Seongil Wi (KAIST), Suyoung Lee (KAIST), Sooel Son (KAIST)

Read More

HYPER-CUBE: High-Dimensional Hypervisor Fuzzing

Sergej Schumilo (Ruhr-Universität Bochum), Cornelius Aschermann (Ruhr-Universität Bochum), Ali Abbasi (Ruhr-Universität Bochum), Simon Wörner (Ruhr-Universität Bochum), Thorsten Holz (Ruhr-Universität Bochum)

Read More