Haoqiang Wang, Yiwei Fang (Institute of Information Engineering, Chinese Academy of Sciences; School of Cyber Security, University of Chinese Academy of Sciences; Indiana University Bloomington), Yichen Liu (Indiana University Bloomington), Ze Jin (Institute of Information Engineering, Chinese Academy of Sciences; School of Cyber Security, University of Chinese Academy of Sciences; Indiana University Bloomington), Emma Delph (Indiana University Bloomington), Xiaojiang Du (Stevens Institute of Technology), Qixu Liu (Institute of Information Engineering, Chinese Academy of Sciences; School of Cyber Security, University of Chinese Academy of Sciences), Luyi Xing (Indiana University Bloomington)

Matter is emerging as an IoT industry–unifying standard, aiming to enhance the interoperability among diverse smart home products, enabling them to work securely and seamlessly together. With many popular IoT vendors increasingly supporting Matter in consumer IoT products, we perform a systematic study to investigate how and whether vendors can integrate Matter securely into IoT systems and how well Matter as a standard supports vendors’ secure integration.

By analyzing Matter development model in the wild, we reveal a new kind of design flaw in user-facing Matter control capabilities and interfaces, called UMCCI flaws, which are exploitable vulnerabilities in the design space and seriously jeopardize necessary control and surveillance capabilities of Matter-enabled devices for IoT users. Therefore we built an automatic tool called UMCCI Checker, enhanced by the large-language model in UI analysis, which enables automatically detecting UMCCI flaws without relying on real IoT devices. Our tool assisted us with studying and performing proof-of-concept attacks on 11 real Matter devices of 8 popular vendors to confirm that the UMCCI flaws are practical and common. We reported UMCCI flaws to related vendors, which have been acknowledged by CSA, Apple, Tuya, Aqara, etc. To help CSA and vendors better understand and avoid security flaws in developing and integrating IoT standards like Matter, we identify two categories of root causes and propose immediate fix recommendations.

View More Papers

Ring of Gyges: Accountable Anonymous Broadcast via Secret-Shared Shuffle

Wentao Dong (City University of Hong Kong), Peipei Jiang (Wuhan University; City University of Hong Kong), Huayi Duan (ETH Zurich), Cong Wang (City University of Hong Kong), Lingchen Zhao (Wuhan University), Qian Wang (Wuhan University)

Read More

WAVEN: WebAssembly Memory Virtualization for Enclaves

Weili Wang (Southern University of Science and Technology), Honghan Ji (ByteDance Inc.), Peixuan He (ByteDance Inc.), Yao Zhang (ByteDance Inc.), Ye Wu (ByteDance Inc.), Yinqian Zhang (Southern University of Science and Technology)

Read More

Do (Not) Follow the White Rabbit: Challenging the Myth...

Soheil Khodayari (CISPA Helmholtz Center for Information Security), Kai Glauber (Saarland University), Giancarlo Pellegrino (CISPA Helmholtz Center for Information Security)

Read More

Modeling End-User Affective Discomfort With Mobile App Permissions Across...

Yuxi Wu (Georgia Institute of Technology and Northeastern University), Jacob Logas (Georgia Institute of Technology), Devansh Ponda (Georgia Institute of Technology), Julia Haines (Google), Jiaming Li (Google), Jeffrey Nichols (Apple), W. Keith Edwards (Georgia Institute of Technology), Sauvik Das (Carnegie Mellon University)

Read More