Runze Zhang (Georgia Institute of Technology), Mingxuan Yao (Georgia Institute of Technology), Haichuan Xu (Georgia Institute of Technology), Omar Alrawi (Georgia Institute of Technology), Jeman Park (Kyung Hee University), Brendan Saltaformaggio (Georgia Institute of Technology)

For decades, law enforcement and commercial entities have attempted botnet takedowns with mixed success. These efforts, relying on DNS sink-holing or seizing C&C infrastructure, require months of preparation and often omit the cleanup of left-over infected machines. This allows botnet operators to push updates to the bots and re-establish their control. In this paper, we expand the goal of malware takedowns to include the covert and timely removal of frontend bots from infected devices. Specifically, this work proposes seizing the malware's built-in update mechanism to distribute crafted remediation payloads. Our research aims to enable this necessary but challenging remediation step after obtaining legal permission. We developed ECHO, an automated malware forensics pipeline that extracts payload deployment routines and generates remediation payloads to disable or remove the frontend bots on infected devices. Our study of 702 Android malware shows that 523 malware can be remediated via ECHO's takedown approach, ranging from covertly warning users about malware infection to uninstalling the malware.

View More Papers

Evaluating LLMs Towards Automated Assessment of Privacy Policy Understandability

Keika Mori (Deloitte Tohmatsu Cyber LLC, Waseda University), Daiki Ito (Deloitte Tohmatsu Cyber LLC), Takumi Fukunaga (Deloitte Tohmatsu Cyber LLC), Takuya Watanabe (Deloitte Tohmatsu Cyber LLC), Yuta Takata (Deloitte Tohmatsu Cyber LLC), Masaki Kamizono (Deloitte Tohmatsu Cyber LLC), Tatsuya Mori (Waseda University, NICT, RIKEN AIP)

Read More

Was This You? Investigating the Design Considerations for Suspicious...

Sena Sahin (Georgia Institute of Technology), Burak Sahin (Georgia Institute of Technology), Frank Li (Georgia Institute of Technology)

Read More

Too Subtle to Notice: Investigating Executable Stack Issues in...

Hengkai Ye (The Pennsylvania State University), Hong Hu (The Pennsylvania State University)

Read More

DUMPLING: Fine-grained Differential JavaScript Engine Fuzzing

Liam Wachter (EPFL), Julian Gremminger (EPFL), Christian Wressnegger (Karlsruhe Institute of Technology (KIT)), Mathias Payer (EPFL), Flavio Toffalini (EPFL)

Read More