Anqi Tian (Institute of Software, Chinese Academy of Sciences; School of Computer Science and Technology, University of Chinese Academy of Sciences), Peifang Ni (Institute of Software, Chinese Academy of Sciences; Zhongguancun Laboratory, Beijing, P.R.China), Yingzi Gao (Institute of Software, Chinese Academy of Sciences; University of Chinese Academy of Sciences), Jing Xu (Institute of Software, Chinese Academy of Sciences; University of Chinese Academy of Sciences;Zhongguancun Laboratory, Beijing, P.R.China)

Payment Channel Networks (PCNs) have been highlighted as viable solutions to address the scalability issues in current permissionless blockchains. They facilitate off-chain transactions, significantly reducing the load on the blockchain. However, the extensive reuse of multi-hop routes in the same direction poses a risk of channel depletion, resulting in involved channels becoming unidirectional or even closing, thereby compromising the sustainability and scalability of PCNs. Even more concerning, existing rebalancing protocol solutions heavily rely on trust assumptions and scripting languages, resulting in compromised universality and reliability.

In this paper, we present Horcrux, a universal and efficient multi-party virtual channel protocol without relying on extra trust assumptions, scripting languages, or the perpetual online requirement. Horcrux fundamentally addresses the channel depletion problem using a novel approach termed textit{flow neutrality}, which minimizes the impact on channel balance allocations during multi-hop payments (MHPs). Additionally, we formalize the security properties of Horcrux by modeling it within the Global Universal Composability framework and provide a formal security proof.

We implement Horcrux on a real Lightning Network dataset, comprising 10,529 nodes and 38,910 channels, and compare it to the state-of-the-art rebalancing schemes such as Shaduf [NDSS'22], Thora [CCS'22], and Revive [CCS'17]. The experimental results demonstrate that (1) the entire process of Horcrux costs less than 1 USD, significantly lower than Shaduf; (2) Horcrux achieves a $12%$-$30%$ increase in payment success ratio and reduces user deposits required for channels by $70%$-$91%$; (3) the performance of Horcrux improves by $1.2x$-$1.5x$ under long-term operation; and (4) Horcrux maintains a nearly zero channel depletion rate, whereas both Revive and Shaduf result in thousands of depleted channels.

View More Papers

Passive Inference Attacks on Split Learning via Adversarial Regularization

Xiaochen Zhu (National University of Singapore & Massachusetts Institute of Technology), Xinjian Luo (National University of Singapore & Mohamed bin Zayed University of Artificial Intelligence), Yuncheng Wu (Renmin University of China), Yangfan Jiang (National University of Singapore), Xiaokui Xiao (National University of Singapore), Beng Chin Ooi (National University of Singapore)

Read More

Blackbox Fuzzing of Distributed Systems with Multi-Dimensional Inputs and...

Yonghao Zou (Beihang University and Peking University), Jia-Ju Bai (Beihang University), Zu-Ming Jiang (ETH Zurich), Ming Zhao (Arizona State University), Diyu Zhou (Peking University)

Read More

On the Realism of LiDAR Spoofing Attacks against Autonomous...

Takami Sato (University of California, Irvine), Ryo Suzuki (Keio University), Yuki Hayakawa (Keio University), Kazuma Ikeda (Keio University), Ozora Sako (Keio University), Rokuto Nagata (Keio University), Ryo Yoshida (Keio University), Qi Alfred Chen (University of California, Irvine), Kentaro Yoshioka (Keio University)

Read More

Mixnets on a Tightrope: Quantifying the Leakage of Mix...

Sebastian Meiser, Debajyoti Das, Moritz Kirschte, Esfandiar Mohammadi, Aniket Kate

Read More