Anqi Tian (Institute of Software, Chinese Academy of Sciences; School of Computer Science and Technology, University of Chinese Academy of Sciences), Peifang Ni (Institute of Software, Chinese Academy of Sciences; Zhongguancun Laboratory, Beijing, P.R.China), Yingzi Gao (Institute of Software, Chinese Academy of Sciences; University of Chinese Academy of Sciences), Jing Xu (Institute of Software, Chinese Academy of Sciences; University of Chinese Academy of Sciences;Zhongguancun Laboratory, Beijing, P.R.China)

Payment Channel Networks (PCNs) have been highlighted as viable solutions to address the scalability issues in current permissionless blockchains. They facilitate off-chain transactions, significantly reducing the load on the blockchain. However, the extensive reuse of multi-hop routes in the same direction poses a risk of channel depletion, resulting in involved channels becoming unidirectional or even closing, thereby compromising the sustainability and scalability of PCNs. Even more concerning, existing rebalancing protocol solutions heavily rely on trust assumptions and scripting languages, resulting in compromised universality and reliability.

In this paper, we present Horcrux, a universal and efficient multi-party virtual channel protocol without relying on extra trust assumptions, scripting languages, or the perpetual online requirement. Horcrux fundamentally addresses the channel depletion problem using a novel approach termed textit{flow neutrality}, which minimizes the impact on channel balance allocations during multi-hop payments (MHPs). Additionally, we formalize the security properties of Horcrux by modeling it within the Global Universal Composability framework and provide a formal security proof.

We implement Horcrux on a real Lightning Network dataset, comprising 10,529 nodes and 38,910 channels, and compare it to the state-of-the-art rebalancing schemes such as Shaduf [NDSS'22], Thora [CCS'22], and Revive [CCS'17]. The experimental results demonstrate that (1) the entire process of Horcrux costs less than 1 USD, significantly lower than Shaduf; (2) Horcrux achieves a $12%$-$30%$ increase in payment success ratio and reduces user deposits required for channels by $70%$-$91%$; (3) the performance of Horcrux improves by $1.2x$-$1.5x$ under long-term operation; and (4) Horcrux maintains a nearly zero channel depletion rate, whereas both Revive and Shaduf result in thousands of depleted channels.

View More Papers

Alba: The Dawn of Scalable Bridges for Blockchains

Giulia Scaffino (TU Wien), Lukas Aumayr (TU Wien), Mahsa Bastankhah (Princeton University), Zeta Avarikioti (TU Wien), Matteo Maffei (TU Wien)

Read More

MTZK: Testing and Exploring Bugs in Zero-Knowledge (ZK) Compilers

Dongwei Xiao (The Hong Kong University of Science and Technology), Zhibo Liu (The Hong Kong University of Science and Technology), Yiteng Peng (The Hong Kong University of Science and Technology), Shuai Wang (The Hong Kong University of Science and Technology)

Read More

Ring of Gyges: Accountable Anonymous Broadcast via Secret-Shared Shuffle

Wentao Dong (City University of Hong Kong), Peipei Jiang (Wuhan University; City University of Hong Kong), Huayi Duan (ETH Zurich), Cong Wang (City University of Hong Kong), Lingchen Zhao (Wuhan University), Qian Wang (Wuhan University)

Read More

Understanding reCAPTCHAv2 via a Large-Scale Live User Study

Andrew Searles (University of California Irvine), Renascence Tarafder Prapty (University of California Irvine), Gene Tsudik (University of California Irvine)

Read More