Yong Zhuang (Wuhan University), Keyan Guo (University at Buffalo), Juan Wang (Wuhan University), Yiheng Jing (Wuhan University), Xiaoyang Xu (Wuhan University), Wenzhe Yi (Wuhan University), Mengda Yang (Wuhan University), Bo Zhao (Wuhan University), Hongxin Hu (University at Buffalo)

Memes have become a double-edged sword on social media platforms. On one hand, they facilitate the rapid dissemination of information and enhance communication. On the other hand, memes pose a risk of spreading harmful content under the guise of humor and virality. This duality highlights the need to develop effective moderation tools capable of identifying harmful memes. Current detection methods, however, face significant challenges in identifying harmful memes due to their inherent complexity. This complexity arises from the diverse forms of expression, intricate compositions, sophisticated propaganda techniques, and varied cultural contexts in which memes are created and circulated. These factors make it difficult for existing algorithms to distinguish between harmless and harmful content accurately. To understand and address these challenges, we first conduct a comprehensive study on harmful memes from two novel perspectives: visual arts and propaganda techniques. It aims to assess existing tools for detecting harmful memes and understand the complexities inherent in them. Our findings demonstrate that meme compositions and propaganda techniques can significantly diminish the effectiveness of current harmful meme detection methods. Inspired by our observations and understanding of harmful memes, we propose a novel framework called HMGUARD for effective detection of harmful memes. HMGUARD utilizes adaptive prompting and chain-of-thought (CoT) reasoning in multimodal large language models (MLLMs). HMGUARD has demonstrated remarkable performance on the public harmful meme dataset, achieving an accuracy of 0.92. Compared to the baseline, HMGUARD represents a substantial improvement, with accuracy exceeding the baselines by 15% to 79.17%. Additionally, HMGUARD outperforms existing detection tools, achieving an impressive accuracy of 0.88 in real-world scenarios.

View More Papers

cozy: Comparative Symbolic Execution for Binary Programs

Caleb Helbling, Graham Leach-Krouse, Sam Lasser, Greg Sullivan (Draper)

Read More

The State of https Adoption on the Web

Christoph Kerschbaumer (Mozilla Corporation), Frederik Braun (Mozilla Corporation), Simon Friedberger (Mozilla Corporation), Malte Jürgens (Mozilla Corporation)

Read More

MALintent: Coverage Guided Intent Fuzzing Framework for Android

Ammar Askar (Georgia Institute of Technology), Fabian Fleischer (Georgia Institute of Technology), Christopher Kruegel (University of California, Santa Barbara), Giovanni Vigna (University of California, Santa Barbara), Taesoo Kim (Georgia Institute of Technology)

Read More

Trust or Bust: A Survey of Threats in Decentralized...

Hetvi Shastri (University of Massachusetts Amherst), Akanksha Atrey (Nokia Bell Labs), Andre Beck (Nokia Bell Labs), Nirupama Ravi (Nokia Bell Labs)

Read More