Lingzhi Wang (Northwestern University), Xiangmin Shen (Northwestern University), Weijian Li (Northwestern University), Zhenyuan LI (Zhejiang University), R. Sekar (Stony Brook University), Han Liu (Northwestern University), Yan Chen (Northwestern University)

As cyber attacks grow increasingly sophisticated and stealthy, it becomes more imperative and challenging to detect intrusion from normal behaviors. Through fine-grained causality analysis, provenance-based intrusion detection systems (PIDS) demonstrated a promising capacity to distinguish benign and malicious behaviors, attracting widespread attention from both industry and academia. Among diverse approaches, rule-based PIDS stands out due to its lightweight overhead, real-time capabilities, and explainability. However, existing rule-based systems suffer low detection accuracy, especially the high false alarms, due to the lack of fine-grained rules and environment-specific configurations.
In this paper, we propose CAPTAIN, a rule-based PIDS capable of automatically adapting to diverse environments. Specifically, we propose three adaptive parameters to adjust the detection configuration with respect to nodes, edges, and alarm generation thresholds. We build a differentiable tag propagation framework and utilize the gradient descent algorithm to optimize these adaptive parameters based on the training data. We evaluate our system using data from DARPA Engagements and simulated environments. The evaluation results demonstrate that CAPTAIN enhances rule-based PIDS with learning capabilities, resulting in improved detection accuracy, reduced detection latency, lower runtime overhead, and more interpretable detection procedures and results compared to the state-of-the-art (SOTA) PIDS.

View More Papers

Security Advice on Content Filtering and Circumvention for Parents...

Ran Elgedawy (The University of Tennessee, Knoxville), John Sadik (The University of Tennessee, Knoxville), Anuj Gautam (The University of Tennessee, Knoxville), Trinity Bissahoyo (The University of Tennessee, Knoxville), Christopher Childress (The University of Tennessee, Knoxville), Jacob Leonard (The University of Tennessee, Knoxville), Clay Shubert (The University of Tennessee, Knoxville), Scott Ruoti (The University of Tennessee,…

Read More

NDSS Symposium 2025 Welcome and Opening Remarks

General Chairs: David Balenson, USC Information Sciences Institute and Heng Yin, University of California, Riverside Program Chairs: Christina Pöpper, New York University Abu Dhabi and Hamed Okhravi, MIT Lincoln Laboratory Artifact Evaluation Chairs: Daniele Cono D’Elia, Sapienza University and Mathy Vanhoef, KU Leuven

Read More

PowerRadio: Manipulate Sensor Measurement via Power GND Radiation

Yan Jiang (Zhejiang University), Xiaoyu Ji (Zhejiang University), Yancheng Jiang (Zhejiang University), Kai Wang (Zhejiang University), Chenren Xu (Peking University), Wenyuan Xu (Zhejiang University)

Read More