Angeliki Aktypi (University of Oxford), Kasper Rasmussen (University of Oxford)

In structured peer-to-peer networks, like Chord, users find data by
asking a number of intermediate nodes in the network. Each node
provides the identity of the closet known node to the address of the
data, until eventually the node responsible for the data is reached.
This structure means that the intermediate nodes learn the address of
the sought after data. Revealing this information to other nodes makes
Chord unsuitable for applications that require query privacy so in
this paper we present a scheme Iris to provide query privacy while
maintaining compatibility with the existing Chord protocol. This means
that anyone using it will be able to execute a privacy preserving
query but it does not require other nodes in the network to use it (or
even know about it).

In order to better capture the privacy achieved by the iterative
nature of the search we propose a new privacy notion, inspired by
$k$-anonymity. This new notion called $(alpha,delta)$-privacy, allows us to formulate
privacy guarantees against adversaries that collude and take advantage
of the total amount of information leaked in all iterations of the
search.

We present a security analysis of the proposed algorithm based on the
privacy notion we introduce. We also develop a prototype of the
algorithm in Matlab and evaluate its performance. Our analysis proves
Iris to be $(alpha,delta)$-private while introducing a modest performance
overhead. Importantly the overhead is tunable and proportional to the
required level of privacy, so no privacy means no overhead.

View More Papers

Compiled Models, Built-In Exploits: Uncovering Pervasive Bit-Flip Attack Surfaces...

Yanzuo Chen (The Hong Kong University of Science and Technology), Zhibo Liu (The Hong Kong University of Science and Technology), Yuanyuan Yuan (The Hong Kong University of Science and Technology), Sihang Hu (Huawei Technologies), Tianxiang Li (Huawei Technologies), Shuai Wang (The Hong Kong University of Science and Technology)

Read More

ASGARD: Protecting On-Device Deep Neural Networks with Virtualization-Based Trusted...

Myungsuk Moon (Yonsei University), Minhee Kim (Yonsei University), Joonkyo Jung (Yonsei University), Dokyung Song (Yonsei University)

Read More

Lend Me Your Beam: Privacy Implications of Plaintext Beamforming...

Rui Xiao (Zhejiang University), Xiankai Chen (Zhejiang University), Yinghui He (Nanyang Technological University), Jun Han (KAIST), Jinsong Han (Zhejiang University)

Read More

A Field Study to Uncover and a Tool to...

Leon Kersten (Eindhoven University of Technology), Kim Beelen (Eindhoven University of Technology), Emmanuele Zambon (Eindhoven University of Technology), Chris Snijders (Eindhoven University of Technology), Luca Allodi (Eindhoven University of Technology)

Read More