Angeliki Aktypi (University of Oxford), Kasper Rasmussen (University of Oxford)

In structured peer-to-peer networks, like Chord, users find data by
asking a number of intermediate nodes in the network. Each node
provides the identity of the closet known node to the address of the
data, until eventually the node responsible for the data is reached.
This structure means that the intermediate nodes learn the address of
the sought after data. Revealing this information to other nodes makes
Chord unsuitable for applications that require query privacy so in
this paper we present a scheme Iris to provide query privacy while
maintaining compatibility with the existing Chord protocol. This means
that anyone using it will be able to execute a privacy preserving
query but it does not require other nodes in the network to use it (or
even know about it).

In order to better capture the privacy achieved by the iterative
nature of the search we propose a new privacy notion, inspired by
$k$-anonymity. This new notion called $(alpha,delta)$-privacy, allows us to formulate
privacy guarantees against adversaries that collude and take advantage
of the total amount of information leaked in all iterations of the
search.

We present a security analysis of the proposed algorithm based on the
privacy notion we introduce. We also develop a prototype of the
algorithm in Matlab and evaluate its performance. Our analysis proves
Iris to be $(alpha,delta)$-private while introducing a modest performance
overhead. Importantly the overhead is tunable and proportional to the
required level of privacy, so no privacy means no overhead.

View More Papers

Be Careful of What You Embed: Demystifying OLE Vulnerabilities

Yunpeng Tian (Huazhong University of Science and Technology), Feng Dong (Huazhong University of Science and Technology), Haoyi Liu (Huazhong University of Science and Technology), Meng Xu (University of Waterloo), Zhiniang Peng (Huazhong University of Science and Technology; Sangfor Technologies Inc.), Zesen Ye (Sangfor Technologies Inc.), Shenghui Li (Huazhong University of Science and Technology), Xiapu Luo…

Read More

BrowserFM: A Feature Model-based Approach to Browser Fingerprint Analysis

Maxime Huyghe (Univ. Lille, Inria, CNRS, UMR 9189 CRIStAL), Clément Quinton (Univ. Lille, Inria, CNRS, UMR 9189 CRIStAL), Walter Rudametkin (Univ. Rennes, Inria, CNRS, UMR 6074 IRISA)

Read More

TZ-DATASHIELD: Automated Data Protection for Embedded Systems via Data-Flow-Based...

Zelun Kong (University of Texas at Dallas), Minkyung Park (University of Texas at Dallas), Le Guan (University of Georgia), Ning Zhang (Washington University in St. Louis), Chung Hwan Kim (University of Texas at Dallas)

Read More

Power-Related Side-Channel Attacks using the Android Sensor Framework

Mathias Oberhuber (Graz University of Technology), Martin Unterguggenberger (Graz University of Technology), Lukas Maar (Graz University of Technology), Andreas Kogler (Graz University of Technology), Stefan Mangard (Graz University of Technology)

Read More