Angeliki Aktypi (University of Oxford), Kasper Rasmussen (University of Oxford)

In structured peer-to-peer networks, like Chord, users find data by
asking a number of intermediate nodes in the network. Each node
provides the identity of the closet known node to the address of the
data, until eventually the node responsible for the data is reached.
This structure means that the intermediate nodes learn the address of
the sought after data. Revealing this information to other nodes makes
Chord unsuitable for applications that require query privacy so in
this paper we present a scheme Iris to provide query privacy while
maintaining compatibility with the existing Chord protocol. This means
that anyone using it will be able to execute a privacy preserving
query but it does not require other nodes in the network to use it (or
even know about it).

In order to better capture the privacy achieved by the iterative
nature of the search we propose a new privacy notion, inspired by
$k$-anonymity. This new notion called $(alpha,delta)$-privacy, allows us to formulate
privacy guarantees against adversaries that collude and take advantage
of the total amount of information leaked in all iterations of the
search.

We present a security analysis of the proposed algorithm based on the
privacy notion we introduce. We also develop a prototype of the
algorithm in Matlab and evaluate its performance. Our analysis proves
Iris to be $(alpha,delta)$-private while introducing a modest performance
overhead. Importantly the overhead is tunable and proportional to the
required level of privacy, so no privacy means no overhead.

View More Papers

The Guardians of Name Street: Studying the Defensive Registration...

Boladji Vinny Adjibi (Georgia Tech), Athanasios Avgetidis (Georgia Tech), Manos Antonakakis (Georgia Tech), Michael Bailey (Georgia Tech), Fabian Monrose (Georgia Tech)

Read More

Explanation as a Watermark: Towards Harmless and Multi-bit Model...

Shuo Shao (Zhejiang University), Yiming Li (Zhejiang University), Hongwei Yao (Zhejiang University), Yiling He (Zhejiang University), Zhan Qin (Zhejiang University), Kui Ren (Zhejiang University)

Read More

Recurrent Private Set Intersection for Unbalanced Databases with Cuckoo...

Eduardo Chielle (New York University Abu Dhabi), Michail Maniatakos (New York University Abu Dhabi)

Read More

DRAGON: Predicting Decompiled Variable Data Types with Learned Confidence...

Caleb Stewart, Rhonda Gaede, Jeffrey Kulick (University of Alabama in Huntsville)

Read More