Zhengchuan Liang (UC Riverside), Xiaochen Zou (UC Riverside), Chengyu Song (UC Riverside), Zhiyun Qian (UC Riverside)

The severity of information leak (infoleak for short) in OS kernels cannot be underestimated, and various exploitation techniques have been proposed to achieve infoleak in OS kernels. Among them, memory-error-based infoleak is powerful and widely used in real-world exploits. However, existing approaches to finding memory-error-based infoleak lack the systematic reasoning about its search space and do not fully explore the search space. Consequently, they fail to exploit a large number of memory errors in the kernel. According to a theoretical modeling of memory errors, the actual search space of such approach is huge, as multiple steps could be involved in the exploitation process, and virtually any memory error can be exploited to achieve infoleak. To bridge the gap between the theory and reality, we propose a framework K-LEAK to facilitate generating memory-error-based infoleak exploits in the Linux kernel. K-LEAK considers infoleak exploit generation as a data-flow search problem. By modeling unintended data flows introduced by memory errors, and how existing memory errors can create new memory errors, K-LEAK can systematically search for infoleak data-flow paths in a multi-step manner. We implement a prototype of K-LEAK and evaluate it with memory errors from syzbot and CVEs. The evaluation results demonstrate the effectiveness of K-LEAK in generating diverse infoleak exploits using various multi-step strategies.

View More Papers

Sneaky Spikes: Uncovering Stealthy Backdoor Attacks in Spiking Neural...

Gorka Abad (Radboud University & Ikerlan Technology Research Centre), Oguzhan Ersoy (Radboud University), Stjepan Picek (Radboud University & Delft University of Technology), Aitor Urbieta (Ikerlan Technology Research Centre, Basque Research and Technology Alliance (BRTA))

Read More

On Requirements and Concepts for TT&C Link Key Management

Christoph Bader (Airbus Defence & Space GmbH)

Read More

LoRDMA: A New Low-Rate DoS Attack in RDMA Networks

Shicheng Wang (Tsinghua University), Menghao Zhang (Beihang University & Infrawaves), Yuying Du (Information Engineering University), Ziteng Chen (Southeast University), Zhiliang Wang (Tsinghua University & Zhongguancun Laboratory), Mingwei Xu (Tsinghua University & Zhongguancun Laboratory), Renjie Xie (Tsinghua University), Jiahai Yang (Tsinghua University & Zhongguancun Laboratory)

Read More