Zhengchuan Liang (UC Riverside), Xiaochen Zou (UC Riverside), Chengyu Song (UC Riverside), Zhiyun Qian (UC Riverside)

The severity of information leak (infoleak for short) in OS kernels cannot be underestimated, and various exploitation techniques have been proposed to achieve infoleak in OS kernels. Among them, memory-error-based infoleak is powerful and widely used in real-world exploits. However, existing approaches to finding memory-error-based infoleak lack the systematic reasoning about its search space and do not fully explore the search space. Consequently, they fail to exploit a large number of memory errors in the kernel. According to a theoretical modeling of memory errors, the actual search space of such approach is huge, as multiple steps could be involved in the exploitation process, and virtually any memory error can be exploited to achieve infoleak. To bridge the gap between the theory and reality, we propose a framework K-LEAK to facilitate generating memory-error-based infoleak exploits in the Linux kernel. K-LEAK considers infoleak exploit generation as a data-flow search problem. By modeling unintended data flows introduced by memory errors, and how existing memory errors can create new memory errors, K-LEAK can systematically search for infoleak data-flow paths in a multi-step manner. We implement a prototype of K-LEAK and evaluate it with memory errors from syzbot and CVEs. The evaluation results demonstrate the effectiveness of K-LEAK in generating diverse infoleak exploits using various multi-step strategies.

View More Papers

AdvCAPTCHA: Creating Usable and Secure Audio CAPTCHA with Adversarial...

Hao-Ping (Hank) Lee (Carnegie Mellon University), Wei-Lun Kao (National Taiwan University), Hung-Jui Wang (National Taiwan University), Ruei-Che Chang (University of Michigan), Yi-Hao Peng (Carnegie Mellon University), Fu-Yin Cherng (National Chung Cheng University), Shang-Tse Chen (National Taiwan University)

Read More

Enhance Stealthiness and Transferability of Adversarial Attacks with Class...

Hui Xia (Ocean University of China), Rui Zhang (Ocean University of China), Zi Kang (Ocean University of China), Shuliang Jiang (Ocean University of China), Shuo Xu (Ocean University of China)

Read More

REPLICAWATCHER: Training-less Anomaly Detection in Containerized Microservices

Asbat El Khairi (University of Twente), Marco Caselli (Siemens AG), Andreas Peter (University of Oldenburg), Andrea Continella (University of Twente)

Read More