Zhengchuan Liang (UC Riverside), Xiaochen Zou (UC Riverside), Chengyu Song (UC Riverside), Zhiyun Qian (UC Riverside)

The severity of information leak (infoleak for short) in OS kernels cannot be underestimated, and various exploitation techniques have been proposed to achieve infoleak in OS kernels. Among them, memory-error-based infoleak is powerful and widely used in real-world exploits. However, existing approaches to finding memory-error-based infoleak lack the systematic reasoning about its search space and do not fully explore the search space. Consequently, they fail to exploit a large number of memory errors in the kernel. According to a theoretical modeling of memory errors, the actual search space of such approach is huge, as multiple steps could be involved in the exploitation process, and virtually any memory error can be exploited to achieve infoleak. To bridge the gap between the theory and reality, we propose a framework K-LEAK to facilitate generating memory-error-based infoleak exploits in the Linux kernel. K-LEAK considers infoleak exploit generation as a data-flow search problem. By modeling unintended data flows introduced by memory errors, and how existing memory errors can create new memory errors, K-LEAK can systematically search for infoleak data-flow paths in a multi-step manner. We implement a prototype of K-LEAK and evaluate it with memory errors from syzbot and CVEs. The evaluation results demonstrate the effectiveness of K-LEAK in generating diverse infoleak exploits using various multi-step strategies.

View More Papers

Invisible Reflections: Leveraging Infrared Laser Reflections to Target Traffic...

Takami Sato (University of California Irvine), Sri Hrushikesh Varma Bhupathiraju (University of Florida), Michael Clifford (Toyota InfoTech Labs), Takeshi Sugawara (The University of Electro-Communications), Qi Alfred Chen (University of California, Irvine), Sara Rampazzi (University of Florida)

Read More

DeGPT: Optimizing Decompiler Output with LLM

Peiwei Hu (Institute of Information Engineering, Chinese Academy of Sciences, Beijing, China), Ruigang Liang (Institute of Information Engineering, Chinese Academy of Sciences, Beijing, China), Kai Chen (Institute of Information Engineering, Chinese Academy of Sciences, China)

Read More

Differentially Private Dataset Condensation

Tianhang Zheng (University of Missouri-Kansas City), Baochun Li (University of Toronto)

Read More

Binary Code Patching: An Ancient Art Refined for the...

Dr. Barton P. Miller (Vilas Distinguished Achievement Professor at The University of Wisconsin-Madison)

Read More