Taifeng Liu (Xidian University), Yang Liu (Xidian University), Zhuo Ma (Xidian University), Tong Yang (Peking University), Xinjing Liu (Xidian University), Teng Li (Xidian University), Jianfeng Ma (Xidian University)

The vision-based perception modules in autonomous vehicles (AVs) are prone to physical adversarial patch attacks. However, most existing attacks indiscriminately affect all passing vehicles. This paper introduces L-HAWK, a novel controllable physical adversarial patch activated by long-distance laser signals. L-HAWK is designed to target specific vehicles when the adversarial patch is triggered by laser signals while remaining benign under normal conditions. To achieve this goal and address the unique challenges associated with laser signals, we propose an asynchronous learning method for L-HAWK to determine the optimal laser parameters and the corresponding adversarial patch. To enhance the attack robustness in real-world scenarios, we introduce a multi-angle and multi-position simulation mechanism, a noise approximation approach, and a progressive sampling-based method. L-HAWK has been validated through extensive experiments in both digital and physical environments. Compared to a 59% success rate of TPatch (Usenix ’23) at 7 meters, L-HAWK achieves a 91.9% average attack success rate at 50 meters. This represents a 56% improvement in attack success rate and a more than sevenfold increase in attack distance.

View More Papers

IsolateGPT: An Execution Isolation Architecture for LLM-Based Agentic Systems

Yuhao Wu (Washington University in St. Louis), Franziska Roesner (University of Washington), Tadayoshi Kohno (University of Washington), Ning Zhang (Washington University in St. Louis), Umar Iqbal (Washington University in St. Louis)

Read More

Detecting Ransomware Despite I/O Overhead: A Practical Multi-Staged Approach

Christian van Sloun (RWTH Aachen University), Vincent Woeste (RWTH Aachen University), Konrad Wolsing (RWTH Aachen University & Fraunhofer FKIE), Jan Pennekamp (RWTH Aachen University), Klaus Wehrle (RWTH Aachen University)

Read More

No Source Code? No Problem! Twenty Years of Research...

Jack W. Davidson, Professor of Computer Science in the School of Engineering and Applied Science, University of Virginia

Read More