Taifeng Liu (Xidian University), Yang Liu (Xidian University), Zhuo Ma (Xidian University), Tong Yang (Peking University), Xinjing Liu (Xidian University), Teng Li (Xidian University), Jianfeng Ma (Xidian University)

The vision-based perception modules in autonomous vehicles (AVs) are prone to physical adversarial patch attacks. However, most existing attacks indiscriminately affect all passing vehicles. This paper introduces L-HAWK, a novel controllable physical adversarial patch activated by long-distance laser signals. L-HAWK is designed to target specific vehicles when the adversarial patch is triggered by laser signals while remaining benign under normal conditions. To achieve this goal and address the unique challenges associated with laser signals, we propose an asynchronous learning method for L-HAWK to determine the optimal laser parameters and the corresponding adversarial patch. To enhance the attack robustness in real-world scenarios, we introduce a multi-angle and multi-position simulation mechanism, a noise approximation approach, and a progressive sampling-based method. L-HAWK has been validated through extensive experiments in both digital and physical environments. Compared to a 59% success rate of TPatch (Usenix ’23) at 7 meters, L-HAWK achieves a 91.9% average attack success rate at 50 meters. This represents a 56% improvement in attack success rate and a more than sevenfold increase in attack distance.

View More Papers

SHAFT: Secure, Handy, Accurate and Fast Transformer Inference

Andes Y. L. Kei (Chinese University of Hong Kong), Sherman S. M. Chow (Chinese University of Hong Kong)

Read More

A Comprehensive Memory Safety Analysis of Bootloaders

Jianqiang Wang (CISPA Helmholtz Center for Information Security), Meng Wang (CISPA Helmholtz Center for Information Security), Qinying Wang (Zhejiang University), Nils Langius (Leibniz Universität Hannover), Li Shi (ETH Zurich), Ali Abbasi (CISPA Helmholtz Center for Information Security), Thorsten Holz (CISPA Helmholtz Center for Information Security)

Read More

On-demand RFID: Improving Privacy, Security, and User Trust in...

Youngwook Do (JPMorganChase and Georgia Institute of Technology), Tingyu Cheng (Georgia Institute of Technology and University of Notre Dame), Yuxi Wu (Georgia Institute of Technology and Northeastern University), HyunJoo Oh(Georgia Institute of Technology), Daniel J. Wilson (Northeastern University), Gregory D. Abowd (Northeastern University), Sauvik Das (Carnegie Mellon University)

Read More

Evaluating LLMs Towards Automated Assessment of Privacy Policy Understandability

Keika Mori (Deloitte Tohmatsu Cyber LLC, Waseda University), Daiki Ito (Deloitte Tohmatsu Cyber LLC), Takumi Fukunaga (Deloitte Tohmatsu Cyber LLC), Takuya Watanabe (Deloitte Tohmatsu Cyber LLC), Yuta Takata (Deloitte Tohmatsu Cyber LLC), Masaki Kamizono (Deloitte Tohmatsu Cyber LLC), Tatsuya Mori (Waseda University, NICT, RIKEN AIP)

Read More