Rui Xiao (Zhejiang University), Xiankai Chen (Zhejiang University), Yinghui He (Nanyang Technological University), Jun Han (KAIST), Jinsong Han (Zhejiang University)

In recent years, the proliferation of WiFi-connected devices and related research has led to novel techniques of utilizing WiFi as sensors, i.e., capturing human movements through channel state information (CSI) perturbations. While this enables passive occupant sensing, it also introduces privacy risks from textit{leaked WiFi signals} that attackers can intercept, leading to threats like textit{occupancy detection}, critical in scenarios such as burglaries or stalking. We propose LeakyBeam, a novel and improved textit{occupancy detection attack} that leverages a new side channel from WiFi CSI, namely beamforming feedback information (BFI). BFI retains victim's movement information, even when transmitted through walls, and is easily captured since BFI packets are unencrypted, making them a rich source of privacy-sensitive information. Furthermore, we also introduce a defense mechanism that obfuscates BFI packets, requiring minimal hardware changes. We demonstrate LeakyBeam's effectiveness through a comprehensive real-world evaluation at a distance of 20 meters, achieving true positive and negative rates of 82.7% and 96.7%, respectively.

View More Papers

Probe-Me-Not: Protecting Pre-trained Encoders from Malicious Probing

Ruyi Ding (Northeastern University), Tong Zhou (Northeastern University), Lili Su (Northeastern University), Aidong Adam Ding (Northeastern University), Xiaolin Xu (Northeastern University), Yunsi Fei (Northeastern University)

Read More

BitShield: Defending Against Bit-Flip Attacks on DNN Executables

Yanzuo Chen (The Hong Kong University of Science and Technology), Yuanyuan Yuan (The Hong Kong University of Science and Technology), Zhibo Liu (The Hong Kong University of Science and Technology), Sihang Hu (Huawei Technologies), Tianxiang Li (Huawei Technologies), Shuai Wang (The Hong Kong University of Science and Technology)

Read More

cozy: Comparative Symbolic Execution for Binary Programs

Caleb Helbling, Graham Leach-Krouse, Sam Lasser, Greg Sullivan (Draper)

Read More

ICSQuartz: Scan Cycle-Aware and Vendor-Agnostic Fuzzing for Industrial Control...

Corban Villa (New York University Abu Dhabi), Constantine Doumanidis (New York University Abu Dhabi), Hithem Lamri (New York University Abu Dhabi), Prashant Hari Narayan Rajput (InterSystems), Michail Maniatakos (New York University Abu Dhabi)

Read More