Alexander Warnecke (TU Braunschweig), Lukas Pirch (TU Braunschweig), Christian Wressnegger (Karlsruhe Institute of Technology (KIT)), Konrad Rieck (TU Braunschweig)

Removing information from a machine learning model is a non-trivial task that requires to partially revert the training process. This task is unavoidable when sensitive data, such as credit card numbers or passwords, accidentally enter the model and need to be removed afterwards. Recently, different concepts for machine unlearning have been proposed to address this problem. While these approaches are effective in removing individual data points, they do not scale to scenarios where larger groups of features and labels need to be reverted. In this paper, we propose the first method for unlearning features and labels. Our approach builds on the concept of influence functions and realizes unlearning through closed-form updates of model parameters. It enables to adapt the influence of training data on a learning model retrospectively, thereby correcting data leaks and privacy issues. For learning models with strongly convex loss functions, our method provides certified unlearning with theoretical guarantees. For models with non-convex losses, we empirically show that unlearning features and labels is effective and significantly faster than other strategies.

View More Papers

CANtropy: Time Series Feature Extraction-Based Intrusion Detection Systems for...

Md Hasan Shahriar, Wenjing Lou, Y. Thomas Hou (Virginia Polytechnic Institute and State University)

Read More

Accountable Javascript Code Delivery

Ilkan Esiyok (CISPA Helmholtz Center for Information Security), Pascal Berrang (University of Birmingham & Nimiq), Katriel Cohn-Gordon (Meta), Robert Künnemann (CISPA Helmholtz Center for Information Security)

Read More

Post-GDPR Threat Hunting on Android Phones: Dissecting OS-level Safeguards...

Mark Huasong Meng (National University of Singapore), Qing Zhang (ByteDance), Guangshuai Xia (ByteDance), Yuwei Zheng (ByteDance), Yanjun Zhang (The University of Queensland), Guangdong Bai (The University of Queensland), Zhi Liu (ByteDance), Sin G. Teo (Agency for Science, Technology and Research), Jin Song Dong (National University of Singapore)

Read More