Alexander Warnecke (TU Braunschweig), Lukas Pirch (TU Braunschweig), Christian Wressnegger (Karlsruhe Institute of Technology (KIT)), Konrad Rieck (TU Braunschweig)

Removing information from a machine learning model is a non-trivial task that requires to partially revert the training process. This task is unavoidable when sensitive data, such as credit card numbers or passwords, accidentally enter the model and need to be removed afterwards. Recently, different concepts for machine unlearning have been proposed to address this problem. While these approaches are effective in removing individual data points, they do not scale to scenarios where larger groups of features and labels need to be reverted. In this paper, we propose the first method for unlearning features and labels. Our approach builds on the concept of influence functions and realizes unlearning through closed-form updates of model parameters. It enables to adapt the influence of training data on a learning model retrospectively, thereby correcting data leaks and privacy issues. For learning models with strongly convex loss functions, our method provides certified unlearning with theoretical guarantees. For models with non-convex losses, we empirically show that unlearning features and labels is effective and significantly faster than other strategies.

View More Papers

Can You Tell Me the Time? Security Implications of...

Vik Vanderlinden, Wouter Joosen, Mathy Vanhoef (imec-DistriNet, KU Leuven)

Read More

CableAuth: A Biometric Second Factor Authentication Scheme for Electric...

Jack Sturgess, Sebastian Köhler, Simon Birnbach, Ivan Martinovic (University of Oxford)

Read More

Copy-on-Flip: Hardening ECC Memory Against Rowhammer Attacks

Andrea Di Dio (Vrije Universiteit Amsterdam), Koen Koning (Intel), Herbert Bos (Vrije Universiteit Amsterdam), Cristiano Giuffrida (Vrije Universiteit Amsterdam)

Read More

BANS: Evaluation of Bystander Awareness Notification Systems for Productivity...

Shady Mansour (LMU Munich), Pascal Knierim (Universitat Innsbruck), Joseph O’Hagan (University of Glasgow), Florian Alt (University of the Bundeswehr Munich), Florian Mathis (University of Glasgow)

Read More