Takuya Watanabe (NTT), Eitaro Shioji (NTT), Mitsuaki Akiyama (NTT), Tatsuya Mori (Waseda University, NICT, and RIKEN AIP)

Intermediary web services such as web proxies, web translators, and web archives have become pervasive as a means to enhance the openness of the web. These services aim to remove the intrinsic obstacles to web access; i.e., access blocking, language barriers, and missing web pages. In this study, we refer to these services as web rehosting services and make the first exploration of their security flaws. The web rehosting services use a single domain name to rehost several websites that have distinct domain names; this characteristic makes web rehosting services intrinsically vulnerable to violating the same origin policy if not operated carefully. Based on the intrinsic vulnerability of web rehosting services, we demonstrate that an attacker can perform five different types of attacks that target users who make use of web rehosting services: persistent man-in-the-middle attack, abusing privileges to access various resources, stealing credentials, stealing browser history, and session hijacking/injection. Our extensive analysis of 21 popular web rehosting services, which have more than 200 million visits per day, revealed that these attacks are feasible. In response to this observation, we provide effective countermeasures against each type of attack.

View More Papers

Towards Plausible Graph Anonymization

Yang Zhang (CISPA Helmholtz Center for Information Security), Mathias Humbert (armasuisse Science and Technology), Bartlomiej Surma (CISPA Helmholtz Center for Information Security), Praveen Manoharan (CISPA Helmholtz Center for Information Security), Jilles Vreeken (CISPA Helmholtz Center for Information Security), Michael Backes (CISPA Helmholtz Center for Information Security)

Read More

µRAI: Securing Embedded Systems with Return Address Integrity

Naif Saleh Almakhdhub (Purdue University and King Saud University), Abraham A. Clements (Sandia National Laboratories), Saurabh Bagchi (Purdue University), Mathias Payer (EPFL)

Read More

Let's Revoke: Scalable Global Certificate Revocation

Trevor Smith (Brigham Young University), Luke Dickenson (Brigham Young University), Kent Seamons (Brigham Young University)

Read More

MACAO: A Maliciously-Secure and Client-Efficient Active ORAM Framework

Thang Hoang (University of South Florida), Jorge Guajardo (Robert Bosch Research and Technology Center), Attila Yavuz (University of South Florida)

Read More