Shaoke Xi (Zhejiang University), Tianyi Fu (Zhejiang University), Kai Bu (Zhejiang University), Chunling Yang (Zhejiang University), Zhihua Chang (Zhejiang University), Wenzhi Chen (Zhejiang University), Zhou Ma (Zhejiang University), Chongjie Chen (HANG ZHOU CITY BRAIN CO., LTD), Yongsheng Shen (HANG ZHOU CITY BRAIN CO., LTD), Kui Ren (Zhejiang University)

The rapid growth of cryptojacking and the increase in regulatory bans on cryptomining have prompted organizations to enhance detection ability within their networks. Traditional methods, including rule-based detection and deep packet inspection, fall short in timely and comprehensively identifying new and encrypted mining threats. In contrast, learning-based techniques show promise by identifying content-agnostic traffic patterns, adapting to a wide range of cryptomining configurations. However, existing learning-based systems often lack scalability in real-world detection, primarily due to challenges with unlabeled, imbalanced, and high-speed traffic inputs. To address these issues, we introduce MineShark, a system that identifies robust patterns of mining traffic to distinguish between vast quantities of benign traffic and automates the confirmation of model outcomes through active probing to prevent an overload of model alarms. As model inference labels are progressively confirmed, MineShark conducts self-improving updates to enhance model accuracy. MineShark is capable of line-rate detection at various traffic volume scales with the allocation of different amounts of CPU and GPU resources. In a 10 Gbps campus network deployment lasting ten months, MineShark detected cryptomining connections toward 105 mining pools ahead of concurrently deployed commercial systems, 17.6% of which were encrypted. It automatically filtered over 99.3% of false alarms and achieved an average packet processing throughput of 1.3 Mpps, meeting the line-rate demands of a 10 Gbps network, with a negligible loss rate of 0.2%. We publicize MineShark for broader use.

View More Papers

Revisiting Concept Drift in Windows Malware Detection: Adaptation to...

Adrian Shuai Li (Purdue University), Arun Iyengar (Intelligent Data Management and Analytics, LLC), Ashish Kundu (Cisco Research), Elisa Bertino (Purdue University)

Read More

Five Word Password Composition Policy

Sirvan Almasi (Imperial College London), William J. Knottenbelt (Imperial College London)

Read More

Crosstalk-induced Side Channel Threats in Multi-Tenant NISQ Computers

Ruixuan Li (Choudhury), Chaithanya Naik Mude (University of Wisconsin-Madison), Sanjay Das (The University of Texas at Dallas), Preetham Chandra Tikkireddi (University of Wisconsin-Madison), Swamit Tannu (University of Wisconsin, Madison), Kanad Basu (University of Texas at Dallas)

Read More

What Makes Phishing Simulation Campaigns (Un)Acceptable? A Vignette Experiment

Jasmin Schwab (German Aerospace Center (DLR)), Alexander Nussbaum (University of the Bundeswehr Munich), Anastasia Sergeeva (University of Luxembourg), Florian Alt (University of the Bundeswehr Munich and Ludwig Maximilian University of Munich), and Verena Distler (Aalto University)

Read More