Dongwei Xiao (The Hong Kong University of Science and Technology), Zhibo Liu (The Hong Kong University of Science and Technology), Yiteng Peng (The Hong Kong University of Science and Technology), Shuai Wang (The Hong Kong University of Science and Technology)

Zero-knowledge (ZK) proofs have been increasingly popular in privacy-preserving applications and blockchain systems. To facilitate handy and efficient ZK proof generation for normal users, the industry has designed domain-specific languages (DSLs) and ZK compilers. Given a program in ZK DSL, a ZK compiler compiles it into a circuit, which is then passed to the prover and verifier for ZK checking. However, the correctness of ZK compilers is not well studied, and recent works have shown that de facto ZK compilers are buggy, which can allow malicious users to generate invalid proofs that are accepted by the verifier, causing security breaches and financial losses in cryptocurrency.

In this paper, we propose MTZK, a metamorphic testing framework to test ZK compilers and uncover incorrect compilations. Our approach leverages deliberately designed metamorphic relations (MRs) to mutate ZK compiler inputs. This way, ZK compilers can be automatically tested for compilation correctness using inputs and mutated variants. We propose a set of design considerations and optimizations to deliver an efficient and effective testing framework. In the evaluation of four industrial ZK compilers, we successfully uncovered 21 bugs, out of which the developers have promptly patched 15. We also show possible exploitations of the uncovered bugs to demonstrate their severe security implications.

View More Papers

“Do We Call Them That? Absolutely Not.”: Juxtaposing the...

Alexandra Klymenko (Technical University of Munich), Stephen Meisenbacher (Technical University of Munich), Luca Favaro (Technical University of Munich), and Florian Matthes (Technical University of Munich)

Read More

Towards Better CFG Layouts

Jack Royer (CentraleSupélec), Frédéric TRONEL (CentraleSupélec, Inria, CNRS, University of Rennes), Yaëlle Vinçont (Univ Rennes, Inria, CNRS, IRISA)

Read More

A New PPML Paradigm for Quantized Models

Tianpei Lu (The State Key Laboratory of Blockchain and Data Security, Zhejiang University), Bingsheng Zhang (The State Key Laboratory of Blockchain and Data Security, Zhejiang University), Xiaoyuan Zhang (The State Key Laboratory of Blockchain and Data Security, Zhejiang University), Kui Ren (The State Key Laboratory of Blockchain and Data Security, Zhejiang University)

Read More

Scale-MIA: A Scalable Model Inversion Attack against Secure Federated...

Shanghao Shi (Virginia Tech), Ning Wang (University of South Florida), Yang Xiao (University of Kentucky), Chaoyu Zhang (Virginia Tech), Yi Shi (Virginia Tech), Y. Thomas Hou (Virginia Polytechnic Institute and State University), Wenjing Lou (Virginia Polytechnic Institute and State University)

Read More