Dongwei Xiao (The Hong Kong University of Science and Technology), Zhibo Liu (The Hong Kong University of Science and Technology), Yiteng Peng (The Hong Kong University of Science and Technology), Shuai Wang (The Hong Kong University of Science and Technology)

Zero-knowledge (ZK) proofs have been increasingly popular in privacy-preserving applications and blockchain systems. To facilitate handy and efficient ZK proof generation for normal users, the industry has designed domain-specific languages (DSLs) and ZK compilers. Given a program in ZK DSL, a ZK compiler compiles it into a circuit, which is then passed to the prover and verifier for ZK checking. However, the correctness of ZK compilers is not well studied, and recent works have shown that de facto ZK compilers are buggy, which can allow malicious users to generate invalid proofs that are accepted by the verifier, causing security breaches and financial losses in cryptocurrency.

In this paper, we propose MTZK, a metamorphic testing framework to test ZK compilers and uncover incorrect compilations. Our approach leverages deliberately designed metamorphic relations (MRs) to mutate ZK compiler inputs. This way, ZK compilers can be automatically tested for compilation correctness using inputs and mutated variants. We propose a set of design considerations and optimizations to deliver an efficient and effective testing framework. In the evaluation of four industrial ZK compilers, we successfully uncovered 21 bugs, out of which the developers have promptly patched 15. We also show possible exploitations of the uncovered bugs to demonstrate their severe security implications.

View More Papers

Beyond Classification: Inferring Function Names in Stripped Binaries via...

Linxi Jiang (The Ohio State University), Xin Jin (The Ohio State University), Zhiqiang Lin (The Ohio State University)

Read More

PBP: Post-training Backdoor Purification for Malware Classifiers

Dung Thuy Nguyen (Vanderbilt University), Ngoc N. Tran (Vanderbilt University), Taylor T. Johnson (Vanderbilt University), Kevin Leach (Vanderbilt University)

Read More

RAIFLE: Reconstruction Attacks on Interaction-based Federated Learning with Adversarial...

Dzung Pham (University of Massachusetts Amherst), Shreyas Kulkarni (University of Massachusetts Amherst), Amir Houmansadr (University of Massachusetts Amherst)

Read More

TME-Box: Scalable In-Process Isolation through Intel TME-MK Memory Encryption

Martin Unterguggenberger (Graz University of Technology), Lukas Lamster (Graz University of Technology), David Schrammel (Graz University of Technology), Martin Schwarzl (Cloudflare, Inc.), Stefan Mangard (Graz University of Technology)

Read More