Cornelius Aschermann (Ruhr-Universität Bochum), Tommaso Frassetto (Technische Universität Darmstadt), Thorsten Holz (Ruhr-Universität Bochum), Patrick Jauernig (Technische Universität Darmstadt), Ahmad-Reza Sadeghi (Technische Universität Darmstadt), Daniel Teuchert (Ruhr-Universität Bochum)

Fuzzing is a well-known method for efficiently identifying bugs in programs.
Unfortunately, when fuzzing targets that require highly-structured inputs such as interpreters, many fuzzing methods struggle to pass the syntax checks.
More specifically, interpreters often process inputs in multiple stages: first syntactic, then semantic correctness is checked. Only if these checks are passed, the interpreted code gets executed.
This prevents fuzzers from executing ``deeper'' --- and hence potentially more interesting --- code.
Typically two valid inputs that lead to the execution of different features in the target application require too many mutations for simple mutation-based fuzzers to discover: making small changes like bit flips usually only leads to the execution of error paths in the parsing engine.
So-called grammar fuzzers are able to pass the syntax checks by using Context-Free Grammars.
Using feedback can significantly increase the efficiency of fuzzing engines.
Hence, it is commonly used in state-of-the-art mutational fuzzers that do not use grammars.
Yet, grammar fuzzers do not make use of code coverage, i.e., they do not know whether any input triggers new functionality or not.

In this paper, we propose NAUTILUS, a method to efficiently fuzz programs that require highly-structured inputs by combining the use of grammars with the use of code coverage feedback.
This allows us to recombine aspects of interesting inputs that were learned individually, and to dramatically increase the probability that any generated input will be accepted by the parser.
We implemented a proof-of-concept fuzzer that we tested on multiple targets, including ChakraCore (the JavaScript engine of Microsoft Edge), PHP, mruby, and Lua.
NAUTILUS identified multiple bugs in all of the targets: Seven in mruby, three in PHP, two in ChakraCore, and one in Lua.
Reporting these bugs was awarded with a sum of 2600 USD and 6 CVEs were assigned.
Our experiments show that combining context-free grammars and feedback-driven fuzzing significantly outperforms state-of-the-art approaches like American Fuzzy Lop (AFL) by an order of magnitude and grammar fuzzers by more than a factor of two when measuring code coverage.

View More Papers

Profit: Detecting and Quantifying Side Channels in Networked Applications

Nicolás Rosner (University of California, Santa Barbara), Ismet Burak Kadron (University of California, Santa Barbara), Lucas Bang (Harvey Mudd College), Tevfik Bultan (University of California, Santa Barbara)

Read More

Cleaning Up the Internet of Evil Things: Real-World Evidence...

Orcun Cetin (Delft University of Technology), Carlos Gañán (Delft University of Technology), Lisette Altena (Delft University of Technology), Takahiro Kasama (National Institute of Information and Communications Technology), Daisuke Inoue (National Institute of Information and Communications Technology), Kazuki Tamiya (Yokohama National University), Ying Tie (Yokohama National University), Katsunari Yoshioka (Yokohama National University), Michel van Eeten (Delft…

Read More

Please Forget Where I Was Last Summer: The Privacy...

Kostas Drakonakis (FORTH, Greece), Panagiotis Ilia (FORTH, Greece), Sotiris Ioannidis (FORTH, Greece), Jason Polakis (University of Illinois at Chicago, USA)

Read More

Geo-locating Drivers: A Study of Sensitive Data Leakage in...

Qingchuan Zhao (The Ohio State University), Chaoshun Zuo (The Ohio State University), Giancarlo Pellegrino (CISPA, Saarland University; Stanford University), Zhiqiang Lin (The Ohio State University)

Read More