NDSS

OmegaLog: High-Fidelity Attack Investigation via Transparent Multi-layer Log Analysis

Wajih Ul Hassan (University of Illinois Urbana-Champaign), Mohammad A. Noureddine (University of Illinois Urbana-Champaign), Pubali Datta (University of Illinois Urbana-Champaign), Adam Bates (University of Illinois Urbana-Champaign)

Recent advances in causality analysis have enabled investigators to trace multi-stage attacks using whole- system provenance graphs. Based on system-layer audit logs (e.g., syscalls), these approaches omit vital sources of application context (e.g., email addresses, HTTP response codes) that can found in higher layers of the system. Although this information is often essential to understanding attack behaviors, incorporating this evidence into causal analysis engines is difficult due to the semantic gap that exists between system layers.

To address this shortcoming, we propose the notion of universal provenance, which encodes all forensically-relevant causal dependencies regardless of their layer of origin. To transparently realize this vision on commodity systems, we present ωLOG (“Omega Log”), a provenance tracking mechanism that bridges the semantic gap between system and application logging contexts. ωLOG analyzes program binaries to identify and model application-layer logging behaviors, enabling application events to be accurately reconciled with system-layer accesses. ωLOG then intercepts applications’ runtime logging activities and grafts those events onto the system-layer provenance graph, allowing investigators to reason more precisely about the nature of attacks. We demonstrate that ωLOG is widely-applicable to existing software projects and can transparently facilitate execution partitioning of dependency graphs without any training or developer intervention. Evaluation on real-world attack scenarios shows that universal provenance graphs are concise and rich with semantic information as compared to the state-of-the-art, with 12% average runtime overhead.