Takami Sato (University of California, Irvine), Ryo Suzuki (Keio University), Yuki Hayakawa (Keio University), Kazuma Ikeda (Keio University), Ozora Sako (Keio University), Rokuto Nagata (Keio University), Ryo Yoshida (Keio University), Qi Alfred Chen (University of California, Irvine), Kentaro Yoshioka (Keio University)

The rapid deployment of Autonomous Driving (AD) technologies on public roads presents significant social challenges. The security of LiDAR (Light Detection and Ranging) is one of the emerging challenges in AD deployment, given its crucial role in enabling Level 4 autonomy through accurate 3D environmental sensing. Recent lines of research have demonstrated that LiDAR can be compromised by LiDAR spoofing attacks that overwrite legitimate sensing by emitting malicious lasers to the LiDAR. However, previous studies have successfully demonstrated their attacks in controlled environments, yet gaps exist in the feasibility of their attacks in realistic high-speed, long-distance AD scenarios. To bridge these gaps, we design a novel Moving Vehicle Spoofing (MVS) system consisting of 3 subsystems: the LiDAR detection and tracking system, the auto-aiming system, and the LiDAR spoofing system. Furthermore, we design a new object removal attack, an adaptive high-frequency removal (A-HFR) attack, that can be effective even against recent LiDARs with pulse fingerprinting features, by leveraging gray-box knowledge of the scan timing of target LiDARs. With our MVS system, we are not only the first to demonstrate LiDAR spoofing attacks against practical AD scenarios where the victim vehicle is driving at high speeds (60 km/h) and the attack is launched from long distances (110 meters), but we are also the first to perform LiDAR spoofing attacks against a vehicle actually operated by a popular AD stack. Our object removal attack achieves ≥96% attack success rates against the vehicle driving at 60 km/h to the braking distances (20 meters). Finally, we discuss possible countermeasures against attacks with our MVS system. This study not only bridges critical gaps between LiDAR security and AD security research but also sets a foundation for developing robust countermeasures against emerging threats.

View More Papers

Off-Path TCP Hijacking in Wi-Fi Networks: A Packet-Size Side...

Ziqiang Wang (Southeast University), Xuewei Feng (Tsinghua University), Qi Li (Tsinghua University), Kun Sun (George Mason University), Yuxiang Yang (Tsinghua University), Mengyuan Li (University of Toronto), Ganqiu Du (China Software Testing Center), Ke Xu (Tsinghua University), Jianping Wu (Tsinghua University)

Read More

GadgetMeter: Quantitatively and Accurately Gauging the Exploitability of Speculative...

Qi Ling (Purdue University), Yujun Liang (Tsinghua University), Yi Ren (Tsinghua University), Baris Kasikci (University of Washington and Google), Shuwen Deng (Tsinghua University)

Read More

A Key-Driven Framework for Identity-Preserving Face Anonymization

Miaomiao Wang (Shanghai University), Guang Hua (Singapore Institute of Technology), Sheng Li (Fudan University), Guorui Feng (Shanghai University)

Read More

SketchFeature: High-Quality Per-Flow Feature Extractor Towards Security-Aware Data Plane

Sian Kim (Ewha Womans University), Seyed Mohammad Mehdi Mirnajafizadeh (Wayne State University), Bara Kim (Korea University), Rhongho Jang (Wayne State University), DaeHun Nyang (Ewha Womans University)

Read More