Takami Sato (University of California, Irvine), Ryo Suzuki (Keio University), Yuki Hayakawa (Keio University), Kazuma Ikeda (Keio University), Ozora Sako (Keio University), Rokuto Nagata (Keio University), Ryo Yoshida (Keio University), Qi Alfred Chen (University of California, Irvine), Kentaro Yoshioka (Keio University)

The rapid deployment of Autonomous Driving (AD) technologies on public roads presents significant social challenges. The security of LiDAR (Light Detection and Ranging) is one of the emerging challenges in AD deployment, given its crucial role in enabling Level 4 autonomy through accurate 3D environmental sensing. Recent lines of research have demonstrated that LiDAR can be compromised by LiDAR spoofing attacks that overwrite legitimate sensing by emitting malicious lasers to the LiDAR. However, previous studies have successfully demonstrated their attacks in controlled environments, yet gaps exist in the feasibility of their attacks in realistic high-speed, long-distance AD scenarios. To bridge these gaps, we design a novel Moving Vehicle Spoofing (MVS) system consisting of 3 subsystems: the LiDAR detection and tracking system, the auto-aiming system, and the LiDAR spoofing system. Furthermore, we design a new object removal attack, an adaptive high-frequency removal (A-HFR) attack, that can be effective even against recent LiDARs with pulse fingerprinting features, by leveraging gray-box knowledge of the scan timing of target LiDARs. With our MVS system, we are not only the first to demonstrate LiDAR spoofing attacks against practical AD scenarios where the victim vehicle is driving at high speeds (60 km/h) and the attack is launched from long distances (110 meters), but we are also the first to perform LiDAR spoofing attacks against a vehicle actually operated by a popular AD stack. Our object removal attack achieves ≥96% attack success rates against the vehicle driving at 60 km/h to the braking distances (20 meters). Finally, we discuss possible countermeasures against attacks with our MVS system. This study not only bridges critical gaps between LiDAR security and AD security research but also sets a foundation for developing robust countermeasures against emerging threats.

View More Papers

I Know What You Asked: Prompt Leakage via KV-Cache...

Guanlong Wu (Southern University of Science and Technology), Zheng Zhang (ByteDance Inc.), Yao Zhang (ByteDance Inc.), Weili Wang (Southern University of Science and Technolog), Jianyu Niu (Southern University of Science and Technolog), Ye Wu (ByteDance Inc.), Yinqian Zhang (Southern University of Science and Technology (SUSTech))

Read More

Diffence: Fencing Membership Privacy With Diffusion Models

Yuefeng Peng (University of Massachusetts Amherst), Ali Naseh (University of Massachusetts Amherst), Amir Houmansadr (University of Massachusetts Amherst)

Read More

Distributed Function Secret Sharing and Applications

Pengzhi Xing (University of Electronic Science and Technology of China), Hongwei Li (University of Electronic Science and Technology of China), Meng Hao (Singapore Management University), Hanxiao Chen (University of Electronic Science and Technology of China), Jia Hu (University of Electronic Science and Technology of China), Dongxiao Liu (University of Electronic Science and Technology of China)

Read More