Zitao Chen (University of British Columbia), Karthik Pattabiraman (University of British Columbia)

Machine learning (ML) models are vulnerable to membership inference attacks (MIAs), which determine whether a given input is used for training the target model. While there have been many efforts to mitigate MIAs, they often suffer from limited privacy protection, large accuracy drop, and/or requiring additional data that may be difficult to acquire.

This work proposes a defense technique, HAMP that can achieve both strong membership privacy and high accuracy, without requiring extra data. To mitigate MIAs in different forms, we observe that they can be unified as they all exploit the ML model’s overconfidence in predicting training samples through different proxies. This motivates our design to enforce less confident prediction by the model, hence forcing the model to behave similarly on the training and testing samples. HAMP consists of a novel training framework with high-entropy soft labels and an entropy-based regularizer to constrain the model’s prediction while still achieving high accuracy. To further reduce privacy risk, HAMP uniformly modifies all the prediction outputs to become low-confidence outputs while preserving the accuracy, which effectively obscures the differences between the prediction on members and non-members.

We conduct extensive evaluation on five benchmark datasets, and show that HAMP provides consistently high accuracy and strong membership privacy. Our comparison with seven state-of- the-art defenses shows that HAMP achieves a superior privacy- utility trade off than those techniques.

View More Papers

A Security and Usability Analysis of Local Attacks Against...

Tarun Kumar Yadav (Brigham Young University), Kent Seamons (Brigham Young University)

Read More

WIP: A First Look At Employing Large Multimodal Models...

Mohammed Aldeen, Pedram MohajerAnsari, Jin Ma, Mashrur Chowdhury, Long Cheng, Mert D. Pesé (Clemson University)

Read More

Differentially Private Dataset Condensation

Tianhang Zheng (University of Missouri-Kansas City), Baochun Li (University of Toronto)

Read More

Enhance Stealthiness and Transferability of Adversarial Attacks with Class...

Hui Xia (Ocean University of China), Rui Zhang (Ocean University of China), Zi Kang (Ocean University of China), Shuliang Jiang (Ocean University of China), Shuo Xu (Ocean University of China)

Read More