Dokyung Song (University of California, Irvine), Felicitas Hetzelt (Technical University of Berlin), Dipanjan Das (University of California, Santa Barbara), Chad Spensky (University of California, Santa Barbara), Yeoul Na (University of California, Irvine), Stijn Volckaert (University of California, Irvine and KU Leuven), Giovanni Vigna (University of California, Santa Barbara), Christopher Kruegel (University of California, Santa Barbara), Jean-Pierre Seifert (Technical University of Berlin), Michael Franz (University of California, Irvine)

The OS kernel is an attractive target for remote attackers. If compromised, the kernel gives adversaries full system access, including the ability to install rootkits, extract sensitive information, and perform other malicious actions, all while evading detection. Most of the kernel's attack surface is situated along the system call boundary. Ongoing kernel protection efforts have focused primarily on securing this boundary; several capable analysis and fuzzing frameworks have been developed for this purpose.

However, there are additional paths to kernel compromise that do not involve system calls, as demonstrated by several recent exploits. For example, by compromising the firmware of a peripheral device such as a Wi-Fi chipset and subsequently sending malicious inputs from the Wi-Fi chipset to the Wi-Fi driver, adversaries have been able to gain control over the kernel without invoking a single system call. Unfortunately, there are currently no practical probing and fuzzing frameworks that can help developers find and fix such vulnerabilities occurring along the hardware-OS boundary.

We present PeriScope, a Linux kernel based probing framework that enables fine-grained analysis of device-driver interactions. PeriScope hooks into the kernel's page fault handling mechanism to either passively monitor and log traffic between device drivers and their corresponding hardware, or mutate the data stream on-the-fly using a fuzzing component, PeriFuzz, thus mimicking an active adversarial attack. PeriFuzz accurately models the capabilities of an attacker on peripheral devices, to expose different classes of bugs including, but not limited to, memory corruption bugs and double-fetch bugs. To demonstrate the risk that peripheral devices pose, as well as the value of our framework, we have evaluated PeriFuzz on the Wi-Fi drivers of two popular chipset vendors, where we discovered 15 unique vulnerabilities, 9 of which were previously unknown.

View More Papers

A Systematic Framework to Generate Invariants for Anomaly Detection...

Cheng Feng (Imperial College London & Siemens Corporate Technology), Venkata Reddy Palleti (Singapore University of Technology and Design), Aditya Mathur (Singapore University of Technology and Design), Deeph Chana (Imperial College London)

Read More

TIMBER-V: Tag-Isolated Memory Bringing Fine-grained Enclaves to RISC-V

Samuel Weiser (Graz University of Technology), Mario Werner (Graz University of Technology), Ferdinand Brasser (Technische Universität Darmstadt), Maja Malenko (Graz University of Technology), Stefan Mangard (Graz University of Technology), Ahmad-Reza Sadeghi (Technische Universität Darmstadt)

Read More

Statistical Privacy for Streaming Traffic

Xiaokuan Zhang (The Ohio State University), Jihun Hamm (The Ohio State University), Michael K. Reiter (University of North Carolina at Chapel Hill), Yinqian Zhang (The Ohio State University)

Read More

TextBugger: Generating Adversarial Text Against Real-world Applications

Jinfeng Li (Zhejiang University), Shouling Ji (Zhejiang University), Tianyu Du (Zhejiang University), Bo Li (University of California, Berkeley), Ting Wang (Lehigh University)

Read More