Dokyung Song (University of California, Irvine), Felicitas Hetzelt (Technical University of Berlin), Dipanjan Das (University of California, Santa Barbara), Chad Spensky (University of California, Santa Barbara), Yeoul Na (University of California, Irvine), Stijn Volckaert (University of California, Irvine and KU Leuven), Giovanni Vigna (University of California, Santa Barbara), Christopher Kruegel (University of California, Santa Barbara), Jean-Pierre Seifert (Technical University of Berlin), Michael Franz (University of California, Irvine)

The OS kernel is an attractive target for remote attackers. If compromised, the kernel gives adversaries full system access, including the ability to install rootkits, extract sensitive information, and perform other malicious actions, all while evading detection. Most of the kernel's attack surface is situated along the system call boundary. Ongoing kernel protection efforts have focused primarily on securing this boundary; several capable analysis and fuzzing frameworks have been developed for this purpose.

However, there are additional paths to kernel compromise that do not involve system calls, as demonstrated by several recent exploits. For example, by compromising the firmware of a peripheral device such as a Wi-Fi chipset and subsequently sending malicious inputs from the Wi-Fi chipset to the Wi-Fi driver, adversaries have been able to gain control over the kernel without invoking a single system call. Unfortunately, there are currently no practical probing and fuzzing frameworks that can help developers find and fix such vulnerabilities occurring along the hardware-OS boundary.

We present PeriScope, a Linux kernel based probing framework that enables fine-grained analysis of device-driver interactions. PeriScope hooks into the kernel's page fault handling mechanism to either passively monitor and log traffic between device drivers and their corresponding hardware, or mutate the data stream on-the-fly using a fuzzing component, PeriFuzz, thus mimicking an active adversarial attack. PeriFuzz accurately models the capabilities of an attacker on peripheral devices, to expose different classes of bugs including, but not limited to, memory corruption bugs and double-fetch bugs. To demonstrate the risk that peripheral devices pose, as well as the value of our framework, we have evaluated PeriFuzz on the Wi-Fi drivers of two popular chipset vendors, where we discovered 15 unique vulnerabilities, 9 of which were previously unknown.

View More Papers

Profit: Detecting and Quantifying Side Channels in Networked Applications

Nicolás Rosner (University of California, Santa Barbara), Ismet Burak Kadron (University of California, Santa Barbara), Lucas Bang (Harvey Mudd College), Tevfik Bultan (University of California, Santa Barbara)

Read More

Countering Malicious Processes with Process-DNS Association

Suphannee Sivakorn (Columbia University), Kangkook Jee (NEC Labs America), Yixin Sun (Princeton University), Lauri Korts-Pärn (Cyber Defense Institute), Zhichun Li (NEC Labs America), Cristian Lumezanu (NEC Labs America), Zhenyu Wu (NEC Labs America), Lu-An Tang (NEC Labs America), Ding Li (NEC Labs America)

Read More

Graph-based Security and Privacy Analytics via Collective Classification with...

Binghui Wang (Iowa State University), Jinyuan Jia (Iowa State University), Neil Zhenqiang Gong (Iowa State University)

Read More

CRCount: Pointer Invalidation with Reference Counting to Mitigate Use-after-free...

Jangseop Shin (Seoul National University and Inter-University Semiconductor Research Center), Donghyun Kwon (Seoul National University and Inter-University Semiconductor Research Center), Jiwon Seo (Seoul National University and Inter-University Semiconductor Research Center), Yeongpil Cho (Soongsil University), Yunheung Paek (Seoul National University and Inter-University Semiconductor Research Center)

Read More