Haotian Chi (Temple University), Qiang Zeng (University of South Carolina), Xiaojiang Du (Temple University), Lannan Luo (University of South Carolina)

Internet of Things (IoT) platforms enable users to deploy home automation applications. Meanwhile, privacy issues arise as large amounts of sensitive device data flow out to IoT platforms. Most of the data flowing out to a platform actually do not trigger automation actions, while homeowners currently have no control once devices are bound to the platform. We present PFirewall, a customizable data-flow control system to enhance the privacy of IoT platform users. PFirewall automatically generates data-minimization policies, which only disclose minimum amount of data to fulfill automation. In addition, PFirewall provides interfaces for homeowners to customize individual privacy preferences by defining user-specified policies. To enforce these policies, PFirewall transparently intervenes and mediates the communication between IoT devices and the platform, without modifying the platform, IoT devices, or hub. Evaluation results on four real-world testbeds show that PFirewall reduces IoT data sent to the platform by 97% without impairing home automation, and effectively mitigates user-activity inference/tracking attacks and other privacy risks.

View More Papers

UIScope: Accurate, Instrumentation-free, and Visible Attack Investigation for GUI...

Runqing Yang (Zhejiang University), Shiqing Ma (Rutgers University), Haitao Xu (Arizona State University), Xiangyu Zhang (Purdue University), Yan Chen (Northwestern University)

Read More

When DNS Goes Dark: Understanding Privacy and Shaping Policy...

Vijay k. Gurbani and Cynthia Hood ( Illinois Institute of Technology), Anita Nikolich (University of Illinois), Henning Schulzrinne (Columbia University) and Radu State (University of Luxembourg)

Read More

Understanding and Detecting International Revenue Share Fraud

Merve Sahin (SAP Security Research), Aurélien Francillon (EURECOM)

Read More

As Strong As Its Weakest Link: How to Break...

Kai Li (Syracuse University), Jiaqi Chen (Syracuse University), Xianghong Liu (Syracuse University), Yuzhe Tang (Syracuse University), XiaoFeng Wang (Indiana University Bloomington), Xiapu Luo (Hong Kong Polytechnic University)

Read More