Hugo Kermabon-Bobinnec (Concordia University), Yosr Jarraya (Ericsson Security Research), Lingyu Wang (Concordia University), Suryadipta Majumdar (Concordia University), Makan Pourzandi (Ericsson Security Research)

Known, but unpatched vulnerabilities represent one of the most concerning threats for businesses today. The average time-to-patch of zero-day vulnerabilities remains around 100 days in recent years. The lack of means to mitigate an unpatched vulnerability may force businesses to temporarily shut down their services, which can lead to significant financial loss. Existing solutions for filtering system calls unused by a container can effectively reduce the general attack surface, but cannot prevent a specific vulnerability that shares the same system calls with the container. On the other hand, existing provenance analysis solutions can help identify a sequence of system calls behind the vulnerability, although they do not provide a direct solution for filtering such a sequence. To bridge such a research gap, we propose Phoenix, a solution for preventing exploits of unpatched vulnerabilities by accurately and efficiently filtering sequences of system calls identified through provenance analysis. To achieve this, Phoenix cleverly combines the efficiency of Seccomp filters with the accuracy of Ptrace-based deep argument inspection, and it provides the novel capability of filtering system call sequences through a dynamic Seccomp design. Our implementation and experiments show that Phoenix can effectively mitigate real-world vulnerabilities which evade existing solutions, while introducing negligible delay (less than 4%) and less overhead (e.g., 98% less CPU consumption than existing solution).

View More Papers

AdvCAPTCHA: Creating Usable and Secure Audio CAPTCHA with Adversarial...

Hao-Ping (Hank) Lee (Carnegie Mellon University), Wei-Lun Kao (National Taiwan University), Hung-Jui Wang (National Taiwan University), Ruei-Che Chang (University of Michigan), Yi-Hao Peng (Carnegie Mellon University), Fu-Yin Cherng (National Chung Cheng University), Shang-Tse Chen (National Taiwan University)

Read More

Transpose Attack: Stealing Datasets with Bidirectional Training

Guy Amit (Ben-Gurion University), Moshe Levy (Ben-Gurion University), Yisroel Mirsky (Ben-Gurion University)

Read More

Strengthening Privacy in Robust Federated Learning through Secure Aggregation

Tianyue Chu, Devriş İşler (IMDEA Networks Institute & Universidad Carlos III de Madrid), Nikolaos Laoutaris (IMDEA Networks Institute)

Read More

Vision: Towards Fully Shoulder-Surfing Resistant and Usable Authentication for...

Tobias Länge (Karlsruhe Institute of Technology), Philipp Matheis (Karlsruhe Institute of Technology), Reyhan Düzgün (Ruhr University Bochum), Melanie Volkamer (Karlsruhe Institute of Technology), Peter Mayer (Karlsruhe Institute of Technology, University of Southern Denmark)

Read More