Hugo Kermabon-Bobinnec (Concordia University), Yosr Jarraya (Ericsson Security Research), Lingyu Wang (Concordia University), Suryadipta Majumdar (Concordia University), Makan Pourzandi (Ericsson Security Research)

Known, but unpatched vulnerabilities represent one of the most concerning threats for businesses today. The average time-to-patch of zero-day vulnerabilities remains around 100 days in recent years. The lack of means to mitigate an unpatched vulnerability may force businesses to temporarily shut down their services, which can lead to significant financial loss. Existing solutions for filtering system calls unused by a container can effectively reduce the general attack surface, but cannot prevent a specific vulnerability that shares the same system calls with the container. On the other hand, existing provenance analysis solutions can help identify a sequence of system calls behind the vulnerability, although they do not provide a direct solution for filtering such a sequence. To bridge such a research gap, we propose Phoenix, a solution for preventing exploits of unpatched vulnerabilities by accurately and efficiently filtering sequences of system calls identified through provenance analysis. To achieve this, Phoenix cleverly combines the efficiency of Seccomp filters with the accuracy of Ptrace-based deep argument inspection, and it provides the novel capability of filtering system call sequences through a dynamic Seccomp design. Our implementation and experiments show that Phoenix can effectively mitigate real-world vulnerabilities which evade existing solutions, while introducing negligible delay (less than 4%) and less overhead (e.g., 98% less CPU consumption than existing solution).

View More Papers

DeepGo: Predictive Directed Greybox Fuzzing

Peihong Lin (National University of Defense Technology), Pengfei Wang (National University of Defense Technology), Xu Zhou (National University of Defense Technology), Wei Xie (National University of Defense Technology), Gen Zhang (National University of Defense Technology), Kai Lu (National University of Defense Technology)

Read More

MacOS versus Microsoft Windows: A Study on the Cybersecurity...

Cem Topcuoglu (Northeastern University), Andrea Martinez (Florida International University), Abbas Acar (Florida International University), Selcuk Uluagac (Florida International University), Engin Kirda (Northeastern University)

Read More

More Lightweight, yet Stronger: Revisiting OSCORE’s Replay Protection

Konrad-Felix Krentz (Uppsala University), Thiemo Voigt (Uppsala University, RISE Computer Science)

Read More

DeGPT: Optimizing Decompiler Output with LLM

Peiwei Hu (Institute of Information Engineering, Chinese Academy of Sciences, Beijing, China), Ruigang Liang (Institute of Information Engineering, Chinese Academy of Sciences, Beijing, China), Kai Chen (Institute of Information Engineering, Chinese Academy of Sciences, China)

Read More