Kostas Drakonakis (FORTH, Greece), Panagiotis Ilia (FORTH, Greece), Sotiris Ioannidis (FORTH, Greece), Jason Polakis (University of Illinois at Chicago, USA)

The exposure of location data constitutes a significant privacy risk to users as it can lead to de-anonymization, the inference of sensitive information, and even physical threats. In this paper we present LPAuditor, a tool that conducts a comprehensive evaluation of the privacy loss caused by public location metadata. First, we demonstrate how our system can pinpoint users’ key locations at an unprecedented granularity by identifying their actual postal addresses. Our evaluation on Twitter data highlights the effectiveness of our techniques which outperform prior approaches by 18.9%-91.6% for homes and 8.7%-21.8% for workplaces. Next we present a novel exploration of automated private information inference that uncovers “sensitive” locations that users have visited (pertaining to health, religion, and sex/nightlife). We find that location metadata can provide additional context to tweets and thus lead to the exposure of private information that might not match the users’ intentions.

We further explore the mismatch between user actions and information exposure and find that older versions of the official Twitter apps follow a privacy-invasive policy of including precise GPS coordinates in the metadata of tweets that users have geotagged at a coarse-grained level (e.g., city). The implications of this exposure are further exacerbated by our finding that users are considerably privacy-cautious in regards to exposing precise location data. When users can explicitly select what location data is published, there is a 94.6% reduction in tweets with GPS coordinates. As part of current efforts to give users more control over their data, LPAuditor can be adopted by major services and offered as an auditing tool that informs users about sensitive information they (indirectly) expose through location metadata.

View More Papers

Mind Your Own Business: A Longitudinal Study of Threats...

Platon Kotzias (IMDEA Software Institute, Universidad Politécnica de Madrid), Leyla Bilge (Symantec Research Labs), Pierre-Antoine Vervier (Symantec Research Labs), Juan Caballero (IMDEA Software Institute)

Read More

DIAT: Data Integrity Attestation for Resilient Collaboration of Autonomous...

Tigist Abera (Technische Universität Darmstadt), Raad Bahmani (Technische Universität Darmstadt), Ferdinand Brasser (Technische Universität Darmstadt), Ahmad Ibrahim (Technische Universität Darmstadt), Ahmad-Reza Sadeghi (Technische Universität Darmstadt), Matthias Schunter (Intel Labs)

Read More

NIC: Detecting Adversarial Samples with Neural Network Invariant Checking

Shiqing Ma (Purdue University), Yingqi Liu (Purdue University), Guanhong Tao (Purdue University), Wen-Chuan Lee (Purdue University), Xiangyu Zhang (Purdue University)

Read More

BadBluetooth: Breaking Android Security Mechanisms via Malicious Bluetooth Peripherals

Fenghao Xu (The Chinese University of Hong Kong), Wenrui Diao (Jinan University), Zhou Li (University of California, Irvine), Jiongyi Chen (The Chinese University of Hong Kong), Kehuan Zhang (The Chinese University of Hong Kong)

Read More