Kostas Drakonakis (FORTH, Greece), Panagiotis Ilia (FORTH, Greece), Sotiris Ioannidis (FORTH, Greece), Jason Polakis (University of Illinois at Chicago, USA)

The exposure of location data constitutes a significant privacy risk to users as it can lead to de-anonymization, the inference of sensitive information, and even physical threats. In this paper we present LPAuditor, a tool that conducts a comprehensive evaluation of the privacy loss caused by public location metadata. First, we demonstrate how our system can pinpoint users’ key locations at an unprecedented granularity by identifying their actual postal addresses. Our evaluation on Twitter data highlights the effectiveness of our techniques which outperform prior approaches by 18.9%-91.6% for homes and 8.7%-21.8% for workplaces. Next we present a novel exploration of automated private information inference that uncovers “sensitive” locations that users have visited (pertaining to health, religion, and sex/nightlife). We find that location metadata can provide additional context to tweets and thus lead to the exposure of private information that might not match the users’ intentions.

We further explore the mismatch between user actions and information exposure and find that older versions of the official Twitter apps follow a privacy-invasive policy of including precise GPS coordinates in the metadata of tweets that users have geotagged at a coarse-grained level (e.g., city). The implications of this exposure are further exacerbated by our finding that users are considerably privacy-cautious in regards to exposing precise location data. When users can explicitly select what location data is published, there is a 94.6% reduction in tweets with GPS coordinates. As part of current efforts to give users more control over their data, LPAuditor can be adopted by major services and offered as an auditing tool that informs users about sensitive information they (indirectly) expose through location metadata.

View More Papers

PeriScope: An Effective Probing and Fuzzing Framework for the...

Dokyung Song (University of California, Irvine), Felicitas Hetzelt (Technical University of Berlin), Dipanjan Das (University of California, Santa Barbara), Chad Spensky (University of California, Santa Barbara), Yeoul Na (University of California, Irvine), Stijn Volckaert (University of California, Irvine and KU Leuven), Giovanni Vigna (University of California, Santa Barbara), Christopher Kruegel (University of California, Santa Barbara),…

Read More

maTLS: How to Make TLS middlebox-aware?

Hyunwoo Lee (Seoul National University), Zach Smith (University of Luxembourg), Junghwan Lim (Seoul National University), Gyeongjae Choi (Seoul National University), Selin Chun (Seoul National University), Taejoong Chung (Rochester Institute of Technology), Ted "Taekyoung" Kwon (Seoul National University)

Read More

SABRE: Protecting Bitcoin against Routing Attacks

Maria Apostolaki (ETH Zurich), Gian Marti (ETH Zurich), Jan Müller (ETH Zurich), Laurent Vanbever (ETH Zurich)

Read More

Sereum: Protecting Existing Smart Contracts Against Re-Entrancy Attacks

Michael Rodler (University of Duisburg-Essen), Wenting Li (NEC Laboratories, Germany), Ghassan O. Karame (NEC Laboratories, Germany), Lucas Davi (University of Duisburg-Essen)

Read More