Menghao Zhang (Tsinghua University), Guanyu Li (Tsinghua University), Shicheng Wang (Tsinghua University), Chang Liu (Tsinghua University), Ang Chen (Rice University), Hongxin Hu (Clemson University), Guofei Gu (Texas A&M University), Qi Li (Tsinghua University), Mingwei Xu (Tsinghua University), Jianping Wu (Tsinghua University)

Distributed Denial-of-Service (DDoS) attacks have become a critical threat to the Internet. Due to the increasing number of vulnerable Internet of Things (IoT) devices, attackers can easily compromise a large set of nodes and launch highvolume DDoS attacks from the botnets. State-of-the-art DDoS defenses, however, have not caught up with the fast development of the attacks. Middlebox-based defenses can achieve high performance with specialized hardware; however, these defenses incur a high cost, and deploying new defenses typically requires a device upgrade. On the other hand, software-based defenses are highly flexible, but software-based packet processing leads to high performance overheads. In this paper, we propose Poseidon, a system that addresses these limitations in today’s DDoS defenses. It leverages emerging programmable switches, which can be reconfigured in the field without additional hardware upgrade. Users of Poseidon can specify their defense strategies in a modular fashion in the form of a set of defense primitives; this can be further customized easily for each network and extended to include new defenses. Poseidon then maps the defense primitives to run on programmable switches—and when necessary, on server software—for effective defense. When attacks change, Poseidon can reconfigure the underlying defense primitives to respond to the new attack patterns. Evaluations using our prototype demonstrate that Poseidon can effectively defend against highvolume attacks, easily support customization of defense strategies, and adapt to dynamic attacks with low overheads.

View More Papers

HotFuzz: Discovering Algorithmic Denial-of-Service Vulnerabilities Through Guided Micro-Fuzzing

William Blair (Boston University), Andrea Mambretti (Northeastern University), Sajjad Arshad (Northeastern University), Michael Weissbacher (Northeastern University), William Robertson (Northeastern University), Engin Kirda (Northeastern University), Manuel Egele (Boston University)

Read More

A Practical Approach for Taking Down Avalanche Botnets Under...

Victor Le Pochat (imec-DistriNet, KU Leuven), Tim Van hamme (imec-DistriNet, KU Leuven), Sourena Maroofi (Univ. Grenoble Alpes, CNRS, Grenoble INP, LIG), Tom Van Goethem (imec-DistriNet, KU Leuven), Davy Preuveneers (imec-DistriNet, KU Leuven), Andrzej Duda (Univ. Grenoble Alpes, CNRS, Grenoble INP, LIG), Wouter Joosen (imec-DistriNet, KU Leuven), Maciej Korczyński (Univ. Grenoble Alpes, CNRS, Grenoble INP, LIG)

Read More

SODA: A Generic Online Detection Framework for Smart Contracts

Ting Chen (University of Electronic Science and Technology of China), Rong Cao (University of Electronic Science and Technology of China), Ting Li (University of Electronic Science and Technology of China), Xiapu Luo (The Hong Kong Polytechnic University), Guofei Gu (Texas A&M University), Yufei Zhang (University of Electronic Science and Technology of China), Zhou Liao (University…

Read More

IMP4GT: IMPersonation Attacks in 4G NeTworks

David Rupprecht (Ruhr University Bochum), Katharina Kohls (Ruhr University Bochum), Thorsten Holz (Ruhr University Bochum), Christina Poepper (NYU Abu Dhabi)

Read More